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Rotational correlation functions and apparently enhanced translational diffusion
in a free-energy landscape model for thex relaxation in glass-forming liquids

Gregor Diezemann, Hans Sillescu, Gerald Hinze and Rolarrigo
Institut fir Physikalische Chemie, Johannes Gutenberg-Universit@inz, 55099 Mainz, Federal Republic of Germany
(Received 7 July 1997; revised manuscript received 1 Decembe) 1997

We explore a simple model for supercooled liquids in which reorientational and translational motions are
inherently coupled to the structural relaxation. Several controversial aspects of the molecular motion in glass-
forming materials are naturally resolved within the framework of our model. These include the geometry of the
molecular reorientations as well as the apparent enhancement of translational diffusion. The breakdown of the
Stokes-Einstein relation is thus explained without assuming the existence of local diffusion coefficients.
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[. INTRODUCTION number of adjustable parameters.
One issue that we will address in detail is the nonexpo-

In a recent papefl], denoted as | in the following, a nentiality of the response functions measured in supercooled
free-energy landscape model was introduced in which théiquids. In comparing the results of relaxation functions ob-
rotational molecular motion is associated with transitions betained in different experiments there is often a notable degree
tween different dynamica(nonergodic, metastablestates, of agreement, suggesting that these functions are dominated
i.e., with structural relaxation. In particular, it was assumedby the same or at least closely related molecular mecha-
that molecular reorientation is completely determined by thenisms. Thus, it was observed that not only dielectric relax-
ratesx(e,e') of transitionse’ — e connecting states on a  ation[14] but also relaxation of poled mesogenic sidegroups
free-energy hypersurface. This obviates the necessity of hain polymers[15] occurs on the same time scale as enthalpy
ing to introduce the time scale for the reorientations separelaxation. Furthermore in dynamic light scattering experi-
rately. In other words, any transition from a molecular ori- ments it has been found that the time scales for molecular
entation{) to a different orientatiof)’ is associated with a reorientation and density fluctuations detected in VH and VV
corresponding transition among the statesvhich defines scattering geometrj16] are similar.
the minima in the free-energy landscape. The model starts It will be discussed further below that this agreement can
from a composite Markov proced®] [e(t),Q(t)] from  be understood within the free-energy landscape model. It
which the non-Markovian process of molecular reorientationwill also explain certain differences in the degree of non-
Q(t), is obtained as a projection from the composite processxponentiality expressed, say, by the stretching parameter
by integrating over all states. The consequences of this Bk of the Kohlrausch function exp-(t/7)%] when consider-
model for the evaluation of higher order correlation func-ing correlation functions obtained by different experimental
tions were dealt with in | and then used to analyze recentechniqueg17].
reduced four-dimensional NMR experimerjt3—5]. How- The mean rotational correlation timés;) wherel de-
ever, it was also shown how the model can be applied tmotes the rank of the Legendre polynomielg.,I=1 for
other experiments in which a selected subensemble is monilielectric relaxation|=2 for NMR or light scatteringwere
tored during its return to the dynamics of the full ensemblefound to be nearly independent of the rdnin supercooled
such as, e.g., nonresonant dielectric hole burpéig liquids close toTy, in particular(ry)=(7,). This fact was

In the present paper, we apply the model to various otheinterpreted as evidence for molecular reorientation by large-
aspects ofx relaxation in supercooled liquids. A large num- angle jumps, i.e., taken to rule out small-angle rotational
ber of different experimental observations have been accudiffusion[18—2(. This conclusion was challenged by Spiess
mulated in the past decades that document a very rich anduring a general discussion on “viscous liquids and the glass
complex phenomenology of the relaxation. Noab initio  transition” [21] where he argued that it should be difficult to
theory is available for describing the dynamics of super-determine the difference betweén ) and(7,), which often
cooled liquids close to the caloric glass transition temperaamounts to a relative shift of a few percent within distribu-
ture Ty. Therefore it is not surprising that vastly different tions having a width of some decadg22]. He mentioned
theoretical concepts have been developed in order to give that from two-dimensional2D) NMR studies on polymeric
phenomenologicallescription. One such approach is the en-glass formers it has to be concluded that reorientations occur
ergy landscape model, which has extensively been studied ioy small angular steps. In this discussion, Williaf28] ar-
the pasf7-12] in various formulation§see Ref[13] fora  gued on the basis of results from dielectric relaxation and
recent discussion of the potential energy landscape pictureKerr effect studies that the quality of the data obtained in his
The particular version presented in this paper aims at a quamgroup was sufficient in order to rule out the small angular
titative (or at least semiquantitativelescription of a maxi- step model. He rather favored the large anguytandom
mum number of experimental observations with a minimumjump model for the description of reorientations in super-
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cooled liquids likeo-terphenyl(see also the literature quoted perature coincides with the mode coupling critical tempera-
in [24]). As will be shown below(see Fig. 3 the present tureT. is still an open questionThese states are viewed as
model provides an explanation of whyr;)=(7,) can be metastable since the free-energy barriers separating them do
found in experiments although reorientation proceeds imot appear to be macroscopic. Thermally activated dynamics
small angular step®5]. The occurrence of small angle pro- proceeding via transitions in the free energy landscape thus
cesses was also inferred frofl-NMR stimulated echo ex- restores ergodicity.

periments in several supercooled liquids sucb-ésrphenyl, In view of the lack of understanding of the mechanism of
toluene, and glycerd26—-29. the activated processes in supercooled liquids, we utilize an

Another example of an experimental finding that has ledapproach that is similar to the one adopted by Bral@dr
to controversial discussions is the enhancement of transldyre [9], and Basler[10]. To each of the many minima in
tional diffusion in comparison with shear viscosity and rota-the free-energy landscape we assign a metastaiess
tional diffusion on approaching the glass transiti@0—33.  state labeled by a single variable A density of states
In the present model the apparent enhancement is seen @09), 7(e), is used to account for the total number of
arise from taking different averages over the transition ratesninima betweere ande+de. The « relaxation is then mod-

An important feature of our approach is that we arrive at thiseled using a master equatif?|, which reads
resultwithout assuming the Stokes-Einstein and Debye rela-
tions to hold locally.

Finally, some comments on the use of a free-energy land- G(e,eo,t)= _f de’ k(€' ,€)G(€,€q,t)
scape model are in order. We mention that the notion of
free-energy minima inherently implies a coarse graining with
respect to the density of the liquid over a certain spatial +f de' (e, €' )G(€',€q,t). (1)
extent. Neither the magnitude nor the temperature depen-
dence of a length scale associated with this coarse graining
are known at present. Consequently, we will not attempt tdlere,G(e,€,t) denotes the conditional probability of find-
give any estimates of the spatial extension of domains oing the system in state at timet if it was in statee, at t
regions in supercooled liquids. =0 and the rates(e’,€) are those associated with transi-

The paper is organized as follows. In the next section wdionse— €’. Apart from the restriction that the(e’, €) have
present the model used for the description of reorientationdb obey detailed balance and that the form of the population
and translational motions in supercooled liquids. We therof the states in thermal equilibrium is given by
discuss the question of the impact of different angular jump
models on experimental observables in Sec. Ill. Section IV is
devoted to the application of the model to the translational p*qe)=Z"1y(e)e ¢, where z:J dep®™e) (2
diffusion of molecules and a discussion of the enhancement
of these as compared to rotations. After a discussion of our
results in Sec. IV we close with some conclusions. each specific choice for these transition rates defines a cer-
tain model.

In all following calculations we use two models for the
k(€' €) differing mainly in the connectivity of the states. In
both models we assume a common activation enepgior
the escape out of the initial stateOne scenario we consider

In this section we briefly recall the main ingredients of theis aglobally connected mod¢GCM) in which each state’
model for molecular reorientations in glass-forming liquidscan be reached from the initial stateThe destination states
proposed earlier ifil] and show how rotations and transla- areé chosen randomly according to the DOS. The transition
tional diffusion can be treated on the same footing. rates for this model read

There are indications, e.g., from the mode coupling ap-
proach to the structural glass transiti8%] and from com-
puter simulation$35,36| of a thermally activated nature of
relaxation below a crossover temperatdielocated in the
moderately supercooled regime. This point of view has alHere 8 denotes the inverse temperature and we have ab-
ready been advocated by Goldstein almost 30 year§&go sorbed the common activation teen#¢ in the attempt fre-
Explicit calculations based on a master equation approacfuency k... With the additional assumption of a Gaussian
[8-11] have shown the ability of such an approach to ac-DOS this model is equivalent to the one used by Digg
count for many aspects of the phenomenology of dhee-  and corresponds to a random energy md@8] with a ki-
laxation, such as the deviations from an Arrhenius law fometics as studied by Shakhnovich and GJA]. A slightly
the mean relaxation times or the stretching of the enthalpylifferent form than Eq(3) was used in a model by Brawer
relaxation functions. [8].

Some models for the structural glass transif{iog,37,38 The other case to be considered idoaally connected
seem to provide evidence for the existence of a large numbenodel(LCM) where starting from a given stateonly states
of nonergodic states corresponding to different minima in theof very similar €’ can be reached. In this case the master
free-energy landscape in the supercooled liquid regime beequation(1) is reduced to a Fokker-Planck equation of the
low a dynamic crossover temperatu®hether this tem- form

II. ACTIVATED DYNAMICS MODEL FOR ROTATIONAL
AND TRANSLATIONAL MOTION
IN SUPERCOOLED LIQUIDS

k(e €)=K,m(e)e Plea 9=k n(e")ePe. (3)
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: 9 Explicit  expressions for the transition rates
G(e €0,)= - [D(€)(BIU(e)/d€)G(e,€0,1)] Wr({e,Q}|{e’,Q'}) are given in I. A solution of Eq(7) is
achieved via an expansion in terms of Wigner rotation ma-
92 trices[43]
+(7_62[D(6)G(61601t)]’ (4)
G({e.Q} {e0, Qo)1)
where we choose 21+1 | |
= 2 GI(E!EOlt)Dmn(Q)Dmn(QO)*

2
I,mn 8w

D(e)=«.e’ andU(e)=—B 1In[n(e)]. (5
and subsequent solution of the following integrodifferential
In this form it is easily verified that the equilibrium solution equations:
is given by Eq(2). In a discrete form this model is similar to
the one employed recently to model the dynamics in a solv-
able glassy systerj#1].
The reason that we use two quite different scenarios in

Gl(e,eo,t)=f de'IT,(€,€' )G (€', €0,t),  With

our calculations is simply to demonstrate that different , y ,

choices for the transition rates lead to results that differ only I (e e ):_f de"x(e",€)5(e—€’)

guantitatively from each other, the main features being very

similar independent of the underlying model. Additionally, +P(cog0))k(e € )[1-d(e—€")]. (8

we restrict ourselves to the choice of a Gaussian DOS. .

This means that the mean relaxation times will have a Ferry—HerePl(Cos@) denotes a Legendre polynomial of rankf

like temperature dependenceexp(Ty/T)?> [42]. Other random reorientational jumps are assumed, one has to re-
choices can lead lead to different curvatures of the meaR'@ce€Pi(cos@)) by 5, o[1]. Note that the model of small step
relaxation times as a function of temperat[t&]. The use of ~angular diffusion is pbtalne? in the lim#—0. From the

a Gaussian DOS allows an immediate interpretation of thétructure of the matridI,(e,e’) the model assum/phon that
width of the distribution of the equilibrium populations as @n angular jump occurs only together with es-€" transi-
being proportional to inverse temperature. This is becausion i immediately evident. The rotational correlation func-

Eq. (2) now reads tions for thelth rank Legendre polynomials are given by
1 a(t)= (P1(Q(1)P(Q0(0)))
Yo ()=
pele) = Nz g (7972 e=—528.  (6) (P1(€2(0))P(20(0)))
27o
=|d J degp® Gi(€,€p,t). 9
In the following calculations we give the free-energy vari- J €] deop™(eo)Gilerco ) ©

ablese as well as the widtler in units of temperature and set . . . .
B=1. These functions are given as inhomogeneous superpositions

The model we use for both rotational as well as transla-Of exponential decays with apparent reorientation rates deter-
ined by the eigenvalues of the matriddg e, €’).

tional motions relies on the assumption that the underlyin v ¢ )
P y dﬂ In order to describe the translational motion of the mol-

dynamics is governed by thermally activated transitions in . i
cules we proceed in exactly the same manner as in the ro-

the energy landscape described above. Only if a transitiofi® | W h ith h e h
e— ¢’ ocours are the orientatiot and the positiorr of a tational case. We assume that with each transition among the

tagged molecule allowed to change. One consequence of trﬁgetastable states associated with free-energy mieithare

assumption is that the stochastic proce€3¢s andr (t) are is an associated transition-r’. The dynamics of the com-
not Markovian. However, the two-dimensional stochasticPOSite Markov procespe(t),r(t)] is then governed by the

processese(t), ()] and[e(t),r(t)] are examples of so- Master equation
called composite Markov processes.

We model the changes €1 andr by angular and trans- G({er}ieo.roft)
lational jumps, respectively, and then calculate the relevant
correlation functions as observed in different types of experi- = f de'f dr'Wr({er}|{e",r'HG({e" r'},
ments.

To start with let us recall the treatment of molecular re- X{€o,Tohit), (10)

orientations as introduced in I. The transition rai€s,e’)

determine the changes in molecylar orie_ntat'(dn These  which is completely analogous to E(}). Let us denote the
changes are modeled by angular jumps via an afglehe  rate for a jump from position’ in statee’ into positionr

conditional probability for the composite Markov process associated with state by A(r,r’). We then have for the
[€(1),Q(t)] obeys a master equation of the form transition matrix:

.G({E,Q},{EO,QO},UZJ de’f dQ'Wg({e,Q}{e",Q'}) WT({E,FH{E',I',}):—{f de”x(e”,e)}5(r—r’)5(e—e')

XG({€,Q'},{€,Qp},1). (7) +A(r,r")[1-6(e—¢€')]. (11



57 ROTATIONAL CORRELATION FUNCTIONS AND . .. 4401

In principle one would need a detailed model for the transi-placed by some other function, which, however, also has to
tion ratesA (r,r’). Since we are interested in the descriptiontend towards the limit + (Q)? for Q—0 since otherwise

of scattering experiments that employ relatively small mo-there would be no diffusive regime at all.

mentum transfers, the details of such a model on a micro- In all the following numerical calculations we use discrete
scopic length scale are not of importance. We assume thaersions of Egs(l) and(4), as discussed in I. The integrals
the displacements proceed via small jumps of lengkh occurring in the master equatidft) are replaced by sums
Then the quantityqéR gives the experimentally relevant =1---N over discrete values; spaced homogeneously with
scale, ifq denotes the modulus of the scattering vector. Typi-a distanceA =¢;, ;— ¢; and the transition rates(e,e’) are
cally, we will be concerned witlgSR<1. If gSR<1 holds written as«(e¢;,e.). Then the Fokker-Planck equatidd)
additionally, then as is shown explicitly further below one ismay be viewed as a master equation with transition rates

in the regime of Fickian diffusion. For simplicity we con-

sider the following model: We assume that all sites into K( ey, €)= k€PN n( &) n(€)}*Oi=1,

which a molecule can jump lie on a sphere of radai®
around its initial position, thus enforcing isotropy from t
outset. Equivalently one could start from a lattice model an
then average over all spatial directions at the end of the caf!
culations[44,45. Of course in a real liquid there will be a
distribution of elementary jump lengths but this complication
will not be taken into account here. Additionally, we note .
that the translational motions associated with transition{Ween the latter within the framework of our model become
among different metastable stateare expected to be highly apparent. Nevertheless the characteristic time scales for the

cooperative. However, here we are mainly concerned witffecay of the rotational correlation functions on the one hand

tagged particle motion and thus also neglect this further com@nd forsS(Q.t) on the other will turn out to be different when

plexity of the problem in the following considerations. compared as a function of the width of the DOS that is of

Equation(10) is dealt with in the following way. We per- [NVerse temperature; see below.
form a Fourier transform

he where § ;-, denotes a Kronecker symbol. Analogously, the
dntegrals appearing in Eqs¢8) and (13) are converted to
ms.

When comparing the expressions for the rotational corre-
lation function and the scattering functions as well as those
for Go(€,€p,t) and Gy(e,€,t) the close interrelations be-

Ill. ROTATIONAL CORRELATION FUNCTIONS

Gqyle,€0,t)= % f dre'9'G({e,r},{eg.roht) We first turn to the controversy concerning the magnitude
(2m) of the jump angles characterizing the reorientational motions
(12) of molecules in the supercooled liquid regime. If one consid-
and solve the integrodifferential equatiorss=(|q|): ers angular jump models for the rotatiof#6], the ratio of
the correlation times(7,)/(r,) with nm=1,23... is

given by
(TaM(Tm)={1—P(cog 0))}/{1—Py(cog0))}. (17)

ﬁere, we have defined the correlation time as the time inte-
gral of the corresponding rotational correlation function

gi(t):

Gq(e,eo,t)ZJ de’Hq(e,e')Gq(e’,eo,t). (13

Here we have made use already of isotropy and the matri
IT4(e,€") is given by

[y(e,€")=- f de"k(€",€)0(e—€")

Ho(aoR) (e, )[1-de= €], (14) (=, dtaro (19

with jo(x) =sin(x)/x denoting a Bessel function. If we intro- e note that our model defined via E@®) yields a single
duce the reduced scattering vector exponentially decaying correlation function if we allow only
for two values of e with equal weightsp®Ye;)=p°Ye,)

Q=qsR 19 _1/2. In this case the correlation time is given by?
it is obvious thatGy(e,eo,t) depends only orQ, that is, — ki1~ Pi(cos@))}, wherex=x(ey,€;) denotes the transi-
Gy(€,€0,1)=Gq(€,€p,1). tion rate. . e
q ; ; ; ; i In the case of small step rotational diffusion, one has
The incoherent intermediate scattering functietb] is . P . N .
now easily evaluated to be given by (71)l{72)=3 and in the case of random reorientational jump

models one findg7,) to be independent of the rarikand
thus(r,)/{75)=1. It is usually then assumed that values of
S(Q’t):f dfj deop®Y(€0)Gol €, €0.1), (18 this ratio in the range of 1-2 indicate the predominance of
large angular jumps.
which for Q<1 decays exponentially exp(—g?D+t) with an In Fig. 1 different first rank rotational correlation func-
effective diffusion coefficient.D This means that we do not tionsgy(t) calculated using Eq9) are shown for transition
assume Fickian diffusion to hold boalculatethe effective  rates chosen according to the GCM, ER). The width of the
diffusion constant from our model. Gaussian DOS is set to=2.0. Note that this quantity is
For other choices of the transition ratés(r,r’) the dimensionless since, as noted below Ej), we have sep
Bessel function occurring in Eq14) would have to be re- =1. The different curves correspond to different jump angles
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FIG. 1. Rotational correlation function of rahk=1, g,(t) cal- 1.0 e 1
culated for an angular jump model with various jump anglegth 09- GCM |
a kinetics chosen from the GCM, E(B). The calculations were o8l ~ )
performed for random jump&J and several jump anglgsym- 07l
bols). The dotted lines represent fits to a Kohlrausch function. = 0.6— B,; =50
. L B; 6=5°
0. The triangles are fo#=1°, the squares fof=10°, and 0-5 z .
the circles are calculated assuming isotropic angular random 0.4 B; 615
jumps. It is to be noted that the “angular jump correlation 0.3 pypo=15
function” defined in Ref[5] and discussed more extensively 05 1.0 1.5 20 25 3.0 3.5 4.0

in | for all three cases is identical to the function representing (b)
the random jump model. This is because the assumption of
random angular jumps implies a complete loss of correlation FIG. 2. (a) Stretching parametg8; vs the widtho as obtained
after each jump. This is also the reason for the fact that fofrom fits of rank 1 rotational correlation functions for jump angle
the case of random rotational jumps g|(t) decay identi- 6=5° for the GCM, Eq.(3) and the LCM, Eq(4). (b) Stretching
cally, independent of the rarik parameterg3; and 3, vs o for the GCM.

The following two features are evident from Fig. 1: The
mean decay time 0§,(t) becomes longer as the angular more pronounced. Furthermore it is evident that within the
jump angled decreases. Additionally, the stretching of the GCM (full line) a more efficient averaging over the DOS
decay decreases with decreasifigBoth effects can be un- occurs than in the LCMdashed lingleading to larger values
derstood as consequences of the fact that a smaller angulr 8,. This is to be expected since even though in both
jump angle leads to a more effective averaging overdhe cases the same number of transitions are necessary for the
— €' transitions and thus over the DOS. Consequently theotational correlation function to decay, in the GCM ener-
decay of the rotational correlation functions tends to a morgyetically more distinct states are sampled with a given
exponential form with decreasing jump angle. It should benumber of transitions. This leads to a more effective averag-
realized that a complete average over the DOS would yielthg over the DOS.
an exponentially decaying correlation function. The prolon-  Figure 2b) illustrates the difference in the stretching of
gation of the decay is easily understood since for small jumpotational correlation functions of different rank. The solid
angles more angular jumps are required in order for the rolines showg, and the dashed ling8,. The upper curves are
tational correlation function to decay. calculated assuming=5° and the lower ones fof=15°

We have calculated the rotational correlation functionsusing the GCM. It is seen that the stretching is more pro-
g,(t) for various values of the widthr of the DOS(= inverse  nounced forg,(t) at a given width of the DOS than it is for
temperaturgand for both the GCM, Eq3), and the LCM,  g,(t). The reason for this is simply that for=1 the orien-
Egs. (4 and (5). For representational convenience thesetations have to change roughly by 90° before the rotational
functions are then fitted to a Kohlrausch expression, correlation function has decayed whereas in the caske of
=2 about 54° are sufficient for decorrelation. This means
that moree— €' transitions are required fag;(t) to decay
than for g,(t). This same argument is responsible for the
The dotted lines in Fig. 1 represent such fits. Some results fatifferent widthso at which significant deviations g8, from
the stretching parametefs from these fits are shown in Fig. unity become obvious for the first time. The number eof
2. We note that the fits to this expression are not always very- €’ transitions involved in the decay of the rotational cor-
good, especially for large values of the widthand large relation functions determines the efficiency of the dynamical
jump angles, where the calculated correlation functions shovaveraging over different states Thus, 8, starts to deviate
a prolonged decay as compared to the Kohlrausch law; cfrom 1 at a smaller value of than 3;.
Fig. 1 and also the discussion in RE5]. Nevertheless, the We now turn to a comparison of the characteristic decay
values of B, give a good measure for the stretching of thetimes of the differeng,(t). We calculated thér) according
gi(t). In Fig. 2@ the exponentg, are shown as a function to Eg. (18) and plot the results in Fig. 3 for various jump
of o for an angular jump model witl#=5°. It is seen that angles. From that plot it is immediately evident that in the
with increasing width of the DOS the stretching becomescase of a sufficiently broad DOSr¢2) the ratio{ 71)/{ )

G

gi()=e ",
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FIG. 3. The ratio of the correlation times as defined in 8&) FIG. 4. Inverse decay time of the incoherent intermediate scat-

for I=1 andl=2, (r)/(7,) for various jump angles as a function tering function vs the square of the modulus of the scattering vector
of the width o of the DOS using the GCM. Also shown is a calcu- as defined in the text. The dotted line represents the diffusive be-
lation with the LCM for=1°. havior, 1foQ?.

does not tell anything about the geometry of the moleculay - }/(7,)~3 for all angular jump models we considered as
reorientations within the framework of our model. The rea-can pe seen from the limit of sma# in Fig. 3.
son is that there is an intrinsic dynamical averaging that is
different for rotational correlation functions of different
ranks|. As one can see from Fig83 a broader DOS and
correspondingly a smaller value of the stretching parameters \We have seen above that a model in which a distribution
B (cf. Fig. 2 leads to more similar values ¢f;) and(7,).  of apparent reorientation rates originates from different tran-
In order to understand this behavior in more detail let ussition ratesk(e,e’) yields quite different results for various
first consider the initial decay rat@t t<(7)) of the rota-  rotational correlation functions depending on the number of

IV. APPARENT TRANSLATIONAL ENHANCEMENT

tional correlation functions as defined by e— €' transitions necessary for the correlation function un-
. o der consideration to decay. Since the required average num-
(r) *= _!'”(‘)gl(t)- ber of transitions is determined by the rank of the rotational

correlation function the various jump models considered lead
to different decay characteristics. The choice to use a specific
experiment sensitive to reorientational motions sets e
tional resolution. Using the translational jump model intro-
_ duced in Sec. Il it is the choice of the scattering vectdhat
(1") " *={1-P\(cog 9))}J dep®{e)l'(e). (19 tells us about thespatial resolution of the experiment and
thus about the number of elementary jump events averaged
Here as in | we have defined the effective decay rate of stat@Ver during the experiment. Thus, conceptuatyin a scat-
€ by tering experiment plays a similar role as the rank case of
rotational correlation functions.
We proceed in a way that is similar to the computation of
F(f)‘:J de’k(e',e€). (20 the rotational correlation functions in that we calculate the
intermediate scattering function according to Etf) as a
For large enough temperatures, i.e., widthsf the DOS that  function of the reduced scattering vec@rand fit the results
are small enough to allow an effective averaging during théo a Kohlrausch function:
decay of the rotational correlation functions these decay ex-
ponentially and the initial decay time coincides with the cor- S(Q,t):e*WTQ)BQ_
relation time,7"=(7). Only for this case can Eq17) be
used to extract a jump angle. Due to the different degrees dh Fig. 4 we plotted 1/, versusQ?. Only for Q values
dynamical averaging over the DOS inherent in the determismaller than roughly 0.1 is %4 proportional toQ?2. This
nation of different(r), as we have seen, E@L7) is not = means that we expect Fickian diffusion to be observed on a
applicable. However, if this expression is rewritten in termslength scale of approximately ten times the average elemen-
of the initial decay constants, then oiseable to deduce a tary jump length. In that case the scattering function decays
mean jump angle. This obviously is because tfi@re com-  exponentially as exXp-(Q/6R)?D+t] and we identify 1tq
pletely independent of any dynamical averaging, since thewith (Q/8R)?D+. The width parameteB decreases only
reflect a short time propertyt€(7)). slightly below unity for largeQ. For Q=10 we havegSq
From the calculations presented here it is clear that the=0.91 for the GCM(solid ling) and 85=0.86 for the LCM
apparent discrepancy between the NMR results of rathe(dashed ling Of course, outside the diffusive regime t&/
small step angular reorientations on the one hand side ardQ?) the behavior of 1, especially the curvature of
the fact of the already mentioned similarity @f,) and({,) as a function ofQ, strongly depends on the model used for
can easily be resolved within our model. We note that ahe elementary jump process, cf. the discussion in Sec. II.
staticdistribution of reorientation rates would yield a ratio of Also the different efficiency in the dynamical averaging over

As shown in Appendix A from Eq(9) in conjunction with
Egs.(7) and(8) one finds
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the DOS in the GCM and the LCM is clearly evident from 10°F
Fig. 4. As already pointed out above, we are only interested 108} GM }
in the diffusive regime, thus our results will not rely on the _ 10"t R.J.,,.s" '
jump model. 2 10%
Within our model the decay constantrg/~ (Q/ 5R)2D+ S 10°% /1"00/
can be calculated analytically in the limit of sm&llvalues, W 10°F
{1-j0(Q)}=%Q% In close analogy to experimental deter- .:‘102'
minations of the long time diffusion coefficient we compute v 101'
the long time limit ofS(Q,t) for small Q. Since the actual oy ol
calculation is rather lengthy, we defer it to Appendix B. 16510 1.5 2.0 2.5 3.0 35 4.0
Here, we only note that the result of this calculation again (a) o
does not depend on the jump model as its validity is re-
stricted to the diffusive regime. One finds that the decay of __10°%t
S(Q,t) is exponential for long times and the decay time is £ ol LCM
given by 3
210"
. 1 < 3
(19" =g sz dep*{e)l(e). (21) 101
6 Q_ 5
A 10%
o
For later convenience we additionally define taeerage v 10"
rate (I'): 100k
0.5
{b) c

(Ty=| depeerce, (22
FIG. 5. (a) Rotational correlation times of the second rank rota-

where the rate$(e) are those defined in E40). With the tional correlation functior{,) and the decay timeq of S(Q,t) in

definition of (I') it is obvious that the translational diffusion .the diffusive regmer0.0Ql) vso for the GCM using d'ﬁ.erem :
coefficientD- is determined b rate average jump anglesé. The dotted line was calculated assuming isotropic
T b 9 random angular jumps. Note thatgy) is independent of. All

SR2 correlation times are scaled to unity for=0. (b) The product of
Dr=— (). (23)  the translational diffusion coefficient and the rank 1 rotational cor-
6 relation times for various jump angles using the LCM aisThe
] . products are scaled to unity at=0.
Note that this expression holds only for sm@llvalues.

Alternatively, the decay constant &Q,t) as calculated e st00d because of the different numbee ofe’ transi-
from the initial slopel —S(Q,t—0)] analogous to Eq19)  tions necessary for the rotational correlation function to de-
(cf. Appendix A yields the same result in the sm@lllimit. ¢4y and the associated different averaging over the DOS, as
In this Ca|CU2|at'°” the limitt—0 is to be understood &  g|ready discussed in connection with the rotational correla-
<1[(Q/6R)°Dr], since we are solely concerned with the tion times. As in all cases discussed before there are only
decay ofS(Q,t) due to translational motions that are associ-slight quantitative differences when the LCM and the GCM
ated witha relaxation and not with processes on shorter timegre compared.
scales. In the case of small scattering vec&(®,t) is ex- The dotted curve in Fig.(8) has been calculated assum-
pected to decay exponentially in the time regime relevant fofng random angular jumps. That means that each reorienta-
our considerations and the translational diffusion CoefﬂClentiona| Jump leads to a Comp|ete decorrelation of molecular
is given by Eq.(23). In this case the short time diffusion orientation. Therefore, this is the model that produces the
coefficient and the long time diffusion coefficient coincide asmaximum difference between rotation and translation, since
is to be expected for ordinary Fickian diffusion. We mentionin this model no averaging over the different stagesccurs
that relation(23) was checked numerically by comparison in the case of the rotational correlation function. Since the
with the values foD as obtained from fits t&(Q,t). Legendre polynomials occuring in E¢8) are replaced by

Next, we compare the values a§=1[(Q/6dR)°Dr]in 5 ,'in this case, we can calculate the correlation tifie$
the diffusive limit with the rotational correlation times. In analytically from Eq.(8), yielding

Fig. 5a) the results for the temperature dependence of the

correlation times are shown for the GCM. The solid line is

7o and the other ones represdnt,) for different angular glRJ:J dep®de)e Tt for 10, (24)
jump models. It is clear that a strong deviation between the

time scales for translation and rotation appears as soon as the

width of the DOS exceeds a certain value. This width is thgyhere the superscript RJ stands for random reorientational
same as the one at which the deViationi 1@>/<T2> from jumps_ Consequent|y we have

their static values+{ 3) and also the deviations @, from 1

occur. Additionally, it is seen in Fig.(8) that larger angular 1

jump anglesd lead to a larger discrepancy between the rota- R _ e —/r-1

tional and the translational correlation times. This is easily (7 J>_f dep™e) (). @9

T'(e)



57 ROTATIONAL CORRELATION FUNCTIONS AND . .. 4405

Therefore, the correlation time is just given by the average of V. DISCUSSION
the inversedecay rates. For finite angular jumps, the corre- . .
lation times are still given byime averagesnstead ofrate In the last two sections we showed that the model intro-

averageshut these times are determined by the eigenvalue uced i,n | can be used for_a cohere_nt description of b‘?th the
of the corresponding matricel(e,e') in Eq. (8). Since translatlona}l a_nd the rotational monong of molecules in su-
these eigenvalues determine the effective rotation rates fd¥ercooled liquids. The central assumption of our model con-
the considered angular jump modét) is given as an av- sists in a 'tlght coupllng.of the respgctlve degrees of freedom
erage over the effective distribution of apparent rotationaf© the activated dynamics responsible for theelaxation.
correlation times. In the case of rotational correlation functions we saw that
Figure §b) shows productgr,)D+ for the LCM as cal- the rankl of these functions determines the number of el-
culated for various angular jump models versus the width oBmentary transitions necessary for the correlation function to
the DOS. If the Stokes-Einstein and Debye relations wouldlecay. As a larger number ef— ¢’ transitions leads to a
hold, these products should be constant. There is, however,maore effective averaging over the D@®r given width o)
remarkable increase of the rotational correlation times asve find different behaviors of the rotational correlation func-
compared to the translational diffusion coefficient. Accord-tions as a function of the rarlkand additionally of the mean
ing to what we discussed above there are two partly compejump angle. We saw that the ratio of the mean correlation
ing effects. The main effect is that the translational diffusiontimes (7,)/(7,) is almost independent of the magnitude of
coefficientD+ is determined by the average decay rdf¢  the jump angles but is determined by the inhedyrtamical
whereas the rotational correlation times are given as timgyeraging over the DOS. Therefore, this ratio is given by its
averages. The maximum apparent translational enhancemesthtic valugwhich is approximately 3 for small jump ang)es
is found for random reorientational jumps and in this casenly for very small widths of the DOS since in that case all
one has within our model rotational correlation functions average effectively over the
complete set of metastable statesThis also is reflected in
SR2 the fact that for these small widths the rotational correlation
D TF“}: — (KT, (26)  functions decay nearly exponentially. In the other extreme of
6 large widths the ratid ,)/{7,) approaches unity indepen-
dent of the magnitude of the jump angles, since then the

We note that the different averages inherent in the definitiorflifferent efficiency of the dynamical averaging is determined
of the translational diffusion coefficient and the rotationalPY the different number of transitions required for the rota-

correlation times have been used as a possible explanation gpnal correlation functions to decay, leading to a faster de-
the apparent translational enhancement quite some time a§@Y Of the correlation function of rark=1. ,
[47]. These different averages also have been assumed to be 1 "€ consequence of these considerations is that a dis-
responsible for the apparent translational enhancement in dffimination of various models of reorientational motion in
previous models known to U80—32. However, in all these supercoole_:d Ilqwds is not p_035|ble in terms ofa comparison
models it was assumed that the Stokes-Einstein and Debﬁr correlat|or_1 tl_mes as obtained from different experimental
relations hold locally and that the averages performed ar8'€thods. This is an inherent property of our model. All mod-
averages over distributions of local rotational correlation€!S in which averages ovestatic correlation time distribu-
times and local translational diffusion coefficients, respections are performed yield the static valugs)/(r,), which
tively. In our present model we do not assume local correla€0rrespond to our values in the limit of vanishing How-

tion times or even diffusion coefficients, but the different Ve, within the framework of such models the experimental

averaging originates from different weights of the transitionOPservation of small step reorientations in fragile glass-
rates(e,e') in the free-energy landscape. forming liquids is inconsistent with the other experimental

There is, however, another competing effect, which hadinding that(r,)=(,). The model we propose here, on the
not to our knowledge been considered earlier and is a dire@ther hand, provides a simple explanation of these observa-
consequence of the model presented here. If small angul#ens i-e., we have ratiogr,)/(7,) between 1 and 2 also for
jumps are used to model the rotational motion of the mol-Models with small angular jumps. Thus our model is able to
ecules, the maximum apparent translational enhancemerfiXplain the similarity of the rotational correlation times of
Eq. (26), is diminished due to the dynamical averaging Overdlffe_rent rankd [18-2Q andsimultaneouslyhe fact that the _
the e— ¢’ transitions performed inherently when Consideringreorlentatlons proceed via small angular steps, as found in
rotational correlation functions of any ramk The limit that ~NMR experiment§27-29, 4§.

is to be considered in case of exponentially decaying rota- [N the case of translational motion, we assumed a simple
tional correlation functions is given by jump model for the elementary translational steps, which

leads to Fickian diffusion on a length scale large compared
to the mean jump lengtldR. We showed that rather large
in 2 1 apparent translational enhancements occur as a function of
D7 :?{1_'3'((705{ 0)} (27 the width of the chosen DOS. Since this width is roughly
proportional to inverse temperature that means that we ex-
_ pect an increasing translational enhancement with decreasing
where 7" is defined in Eq.(19) and is determined by the temperature in qualitative accord with experiment.
average decay ratd’) just as the translational diffusion co- In order to see how useful our model is when trying to
efficient. estimate parameters that are relevant in the supercooled state,



4406 DIEZEMANN, SILLESCU, HINZE, AND BOHMER 57

proachingTy from above, as has been observed in glycerol
102 | 0 [29]. Unfortunately, the temperature dependent variation of
’ the mean jump angle is not available fofTP at present.
Another aspect to be borne in mind is the fact that the as-
sumption of a Gaussian DOS has no other meaning than a
model parametrization and other choices will lead to quanti-
tatively different results. The overall trends, however, are
independent of these model assumptions. Therefore, we
think that our model calculations are in qualitative accord
with the experimental findings.

From the experimental diffusion coefficients we can give
an estimate of the elementary jump lendiR in our model.

FIG. 6. Product(r;)Dt VS 0scaeq[0—0(290 K[0(243K)  We use the values for the rotational correlation times and
—a(290 K)] for the GCM as well as for the LCM assuming a jump diffusion coefficient aff = 290 K, (1o)=4X 10 8 s andD+
angle #=10° for the parameters chosen in a way as to represent. 5w 10-23 m2 s~ from the work of Changet al. [48] and

0-TP; see text. In particular this meaiz;) Dy has been scaled to neglect the different dynamical averaging inherent in these
unity at ac that corresponds td=290 K. : .
values for a moment. Then we can estimate the mean transi-

we compare some predictions concerning the apparent tran4on ra}e assuming 10° ?ngular Jumps accorcimg(tg}
lational enhancement with experimental results on ortho=(x) = {1—Pa(cos@))} * as (x)~5.6x10° s*. From
terphenyl(0-TP). We use the values g8, from dielectric  this value we obtain 5R~0.46 A when using Dy
experiment$49] of Dixon et al.[50,51). From Fig. 2 of Ref. =(0R?/6)(x). This value roughly corresponds téR
[50] we read off the values g8;~0.42 and 0.53 at approxi- =0.2Ry, whereRy, is the hydrodynamic radius quoted for
mate temperaturey ~T,=243 K and T~280K, respec- an o-TP moleculdg26]. This small value foisR is consistent
tively. A slight extrapolation of the published data yields With the observation of Stillinger and Webgs2] that par-
B1~0.59 atT=290 K. This last temperature is the one atticles move only about one-tenth of their diameter in a tran-
which upon cooling the “decoupling” of translational and sition between potential energy basins and also the assump-
rotational diffusion becomes significafit6,48. Since in  tions of Hall and Wolyneg453] in their density functional
these experiments the rotational functions of rank2  analysis of the free-energy barriers in hard sphere glasses.
(NMR) have been determined, we transform the quoted valAdditionally, it is compatible with the observation of Wuttke
ues of3; to the widthse of our model DOS(cf. Fig. 2 and et al. [54] of a crossover to diffusive dynamics in the wave
then calculate the correspondirgy from these widths. In number range of 1 and 0.1 A in their study of tagged particle
doing so we additionally make use of the result that the meafotion in glycerol.
angular jump angle i-TP is approximatelyg=10° [48]. It should be noted that the rough estimateS& based on
This way we obtainr(243 K)=3.4, B,(243 K)=0.35, and the relationr; =« {1~ P,(cos(@))} * [see the discussion
(290 K)=2.7, B,(290 K)=0.51 for the GCM. The corre- below Eq.(18)] is not possible for larger widths at lower
sponding values for the LCM ares(243K)=3.2, temperature because of the different dynamical averaging in-
B,(243 K)=0.37, and o(290 K)=2.3, $3,(290 K)=0.53.  herent in the determination of the translational diffusion co-
We mention that these values f85(243 K) are compatible €fficient and the rotational correlation times. However, the
with those obtained fronfH-NMR [26,48. conclusion drawn in Ref.48] that the rms displacement of
In order to compare the apparent enhancement of transl@n 0-TP molecule during the mean rotational correlation
tional over rotational diffusion predicted by our model with time (7,) is given by (@ 1(72))¥*=4.7 nm afT,=243 K is
the experiments on-TP we have plotted the produ¢t,)  in full harmony with our model since we are certainly in the
D+ as a function ofr in Fig. 6. There we scaled this product diffusive limit at these large displacements. Thus the trans-
to unity at that widtho which corresponds to 290 K. As lational diffusion coefficient is determined by the rate aver-
already mentioned above, the respective valuesoar@.7  age[cf. Eq. (23)] whereas(7,) represents an average over
for the GCM (full line) and o=2.3 for the LCM (dashed inverse effective reorientation rates. .
line). This means we match the temperature dependences of Since the mechanism for the apparent translational en-
the rotational and the translational time scales at high tembancement is given by the different averages involved in the
peratures, a procedure that is often adopted when dealirg@lculations of the translational diffusion coefficient and the
with experimental data. At the corresponding width@43  rotational correlation times, we predict that there should be
K), the apparent translational enhancement is about 1.5-/20 enhancement if the initial slopédetermined at<(r))
decades. This value is to be compared with the experimerff the rotational correlation functions are compared to the
tally found enhancement of roughly 2 decaf28,48. Thus, translational diffusion coefficient. The product of the initial
the simple estimate presented here is in accord with experfecay timer" and the translational diffusion coefficient is
ment. However, we think this coincidence should not begiven by Eq.(27). This ratio is independent of the averages
overemphasized in view of the crude simplifications inherenpver the decay rates since both quantities are determined
in our assumption. The assumption of a single jump angle isolely by(I'). On the other hand, within our model a com-
of course a serious drawback in a quantitative estimate. It iparison of the initial decay time" with the translational
to be expected that the jump angles are distributed and thaiiffusion coefficient could be used to obtain information
the mean jump angle should decrease somewhat when a@bout the geometry of the rotational motion of the molecules.
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If Eq. (27) is evaluated for a mean reorientational jump anglesion coefficient from the decay constant of the incoherent
of #=10°, one finds a value ofI'D+ that is larger by a intermediate scattering function. Within the model the trans-
factor of ~65 as compared to the corresponding value forational diffusion coefficient is determined by an average
random reorientational jumps. over all transition rates among the metastable states. A com-
parison of the diffusion coefficient with the corresponding
quantity from rotational correlation functions shows a dra-
VI. CONCLUSIONS matic apparent translational enhancement. This is in qualita-
_ ) tive accord with what is observed experimentally. As in ear-
_In this paper we examined the consequences of a Veryer models[30-37 the apparent translational enhancement
simplistic model for some aspects afrelaxation in super- pas its origin in the different averages involved in the calcu-
cooled liquids. Since nab initio theoretical description of |ations of the translational diffusion coefficient and the rota-
the dynamical behavior of supercooled liquids exists ational correlation times. However, within the approach de-
present, we use a simple phenomenological model. Thigeloped here it is not necessary to introduce local diffusion
model is based on the assumption that below a certain tengoefficients as also assumed, for instance, in . Con-
perature(located in the moderately supercooled regirae  sequently, we do not rely on spatial dimensions of, e.g., do-
godicity in the liquid is broken on short time scales andmains that are large enough to allow Fickian diffusion to be
restored on longer time scales by thermally activated transia valid description. Additionally, we were able to show that
tions among the metastable states. We modeled this activatége apparent translational enhancement should vanish if ei-
dynamics in terms of a master equation. Since the mode"ng’]er the initial decay time of the rotational correlation func-
of the transitions among the metastable states is not our maftPns are considered or these correlation functions decay ex-
concern, we again used very simple kinetic postulates for theonentially in time. )
transition rates, differing only in their respective connectiv- W€ note that we have used the same model in order to
ity. We used two distinct connectivities in order to show thatdescribe the results of reduced four-dimensional NMR ex-

the details of the model for the transition rates do not chang@?rimems[l] apd were.ab_le to ShOW, conne_ctions bgtween
the overall picture, which is in qualitatiier even quantita- different experimental findings associated wittrelaxation

tive) agreement with experiment. The modeling of the rotalN supercooled liquids that had been interpreted as indepen-

tional and translational degrees of freedom is in the focus ofl€nt features before. . .
our computations. We assume that only in connection with a !N Particular, itis not necessary to introduce a second time
transition among the metastable glassy states can the m cale for environmental fluctuations. In effeetrelaxation is
ecules undergo a reorientational as well as a translation&€Scribed by a remarkably small number of adjustable pa-

elementary process. In the present article we restricted ouf@Meters in our model. If a Gaussian density of free-energy
selves to dynamics associated with th@rocess; fastets) statesz(e) is assumed, its widthr and the attempt frequency

processes are planned to be incorporated into the model #- [58€ EQ(3)] provide the input into Eqd1), (8), and(13)
the future. for describing rotational and translational molecular motion.

We modeled both the reorientational as well as the trans] "€ knowledge of the rotational jump angfeis sufficient
lational motions in terms of finite jump models. That mean for determining the different mean rotational correlation

we assumed that the rotation of molecules proceeds via finithes, Stretching parameters, and the amount of apparent
(though essentially smallngular jumpsd and the transla- trgnslauonal enhancement as a function of the widtfsee
tional motion via jumps of a mean distané®. We then ~ F9S- 2-6. , o
showed that concerning the rotational motion such a simple ©onceming heterogeneity, our model has an intrinsic dy-
model is able to shed light on some heretofore unresolve§@mical heterogeneous structure but nothing can be said

aspects with regard to the geometry of the rotations in supe@PCUt spatial aspects of this heterogeneous behavior. In order
cooled liquids. A comparison of rotational correlation times!© ©Ptain such information a more detailed understanding of

of different ranksl, specifically the ratiq ;)/{,), usually theT activated dynamics in supercooled liquids would bg re-

is found to be~1. This is often taken to indicate the pre- quired. We speculate, however, that the free-energy variable

dominance of large angular jumps. In fact, it has long beer&we used to label the metastable glass states should be a
I

assumed that the angular jump angles are large in fragi nction of some coarse grained density. What the appropri-

supercooled liquids. On the other hand the only methodt€ length scale for coarse graining might be is an open ques-

known to us capable of providing detailed information about!'o" t Present in our view.

the jump angles is the so-called stimulated echo and relateld We clpse by notir|1g dtrl!at %ven tthl#gh thbe _natureécrb— d
two-dimensional NMR techniques. In the case of glycerol axation in supercooled liquids Is far from being understoo

toluene, anch-TP these experiments clearly show that typi_theorehcally we are nevertheless able to explain several ex-

cal mean elementary reorientation angles are on the order Bprlment_al findings with a simple model_that is based on the

10° [26,27,29,48 We have shown that our model yields assumption .of a strong_lnherent couplmg_ of “the f'otatlonal

ratios of(7,)/(r,)~1 also for such small angles due to the and tra}nslauonal dynamics to the underlying “true” glassy

inherent dynamical averaging over the DOS of metastablgynam'cs'

glassy states. The reason for this finding lies in the fact that

for rotational correlation functions of different rank different

numbers of transitions are required in order for the correla- Itis a pleasure to thank I. Chang and K. Schug for fruitful

tion function to decay. discussions. The authors’ work in the subject area was
When our model is applied to translational motions in thefunded by the Deutsche Forschungsgemeinsci@tint No.

diffusive regime, it is possible to define a translational diffu- SFB 263.
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APPENDIX A: THE INITIAL DECAY RATES APPENDIX B: THE LONG TIME LIMIT OF  S(Q,t)

. - FOR 0
Here, we sketch how the expressions for the initial decay Q=

rates ¢") "%, Eq.(19), and ¢3") "%, Eq.(21), are obtained We will derive the asymptotic long time behavior of the
from the master equatior(8) and(13). In order to treat the intermediate scattering functiog(Q,t), where Q denotes
case of orientational correlation functioggt) and the inco- the reduced scattering vector, defined in Bd), in the limit
herent scattering functio8(Q,t) on the same footing, we of small Q values,Q<1. For simplicity, we use a discrete
introduce a correlation functio®,(t) with ®,(t) represent- notation, in which, e.g., Eq16) reads

ing g,(t) or S(Q,t), respectively. Thusg denotes either in N

the case of reorientations Qr if translations are considered.

In the same way, Eq$8) and(13) can be written in a unigue S(Q.t)= izl P*A€)Gqlei €. t).
way:

(B1)

Normalization is such thak;p®Y¢;)=1. All results are of
. , ) ) course independent of this discretization. In the continuous
Gx(f*fo’t):j de'll(€,€")Cx(e’, €0,1) (AD)  case all sums occurring in the following are simply to be
replaced by the corresponding integrals. We proceed in the
with following way: We have to solve the master equation, Eq.
(13), which reads

II(e,e")=—T(€)S(e— € )+ h(X)k(€,€)1—5(e—€')]; N
(A2) Golei €)= X, Tole Gl €. (B2
cf. Egs.(8) and(14). Furthermore, we have used the defini-

tion Eq. (20) of the effective decay rat€(e). In Eq. (A2)  Wwith
(x) stands for the Legendre polynomiB|(cos@)) in the

reorientational case and for the Bessel funciigiQ) in the Ho(ei,e)=—T(€) 8kt jo(Q) k(e €)[1~ 6l
case of translational motion. The correlation function is (B3)
given by [cf. Eq.(14)] where we have used the definiti¢20) for the

effective decay rate. We now utilize the sm@lllimit of the
q)x(t):f dEJ deop® €9) Gy (€, €0.1). (A3) Bessel function,jo(Q):'l—%Q2 in order to define a prob-

lem that we can treat in perturbation theofote that in
. _ . three dimensions every well defined model for diffusion has
We now define an instantaneous decay rate via to show the same limiting behavior as the Bessel function.

) We now split the matridIy(e;,€,) in an obvious way:
[Tx(t)]7%=_(p(t)/q)(t)- (A4) (0) (1)
Ho(e e =I1"" (€, €) + 1157 (€, €). (B4)

Insertion of Eq.(A3) yields Here the “unperturbed” problem is defined by

[Tx(t)]ﬂ:[l—i/f(x)]f dfope"(fo)f del'(€)Gy(€,€0,1). e, e0=—T(€) k+ (e, €)[1- k] (BS)

(A5)  and is independent d@. The “perturbation” is given by

In obtaining Eq.(A5) use has been made of the fact that 1Y€, €)=~ §Q%k(€; €[ 1~ & 1. (B6)
The matrixIl(€;, €) has the same eigenvalues as the sym-

f dfcx(f,eo,t)z—[l—lﬂ(x)]f deI'(€)Gy(€, €p,1) metric matrix

as can be shown using Eqé.1) and(A2). We point out that o(€i,e) =[p*Y&)] YAlg( €, e[ PN ) 12

the first term stems from the diagonal partldf(e,€’) and  (Ref. [2]). In the limit Q—0 Eq. (1) is recovered from Eq.
the terme y(x) from the off-diagonal part. The initial decay (g2). This particularly means that there is one eigenvector
rate (ry) '=[7(t=0)]"" then reads, usingG(e,€0,t  (the largest one which is zero\,=0. The corresponding

=0)=d(e—€0), eigenvector of the matrixI®(e;,e) is given by S,
=p*Y€y). In terms of the eigenvectors the solution of Eq.
(M -1=[1— l/f(X)]f dep®{e)l(e) (A6) (1) after Laplace transformatiof(s)=fdt e S'(t) reads
. :

. . . . . L€ =pq e eq . : _ 71.
This expression is the one given as EG<®) and(21) in the G(ei.€;,8)=Vp*Le)/p O(EJ)%: SimSj,ml S~ Ml

text. It is obvious from this derivation that in the case of (B7)
single exponentially decaying correlation functions the in-

stantaneous decay rates are time independent and are givehis solution allows us to write down the perturbation series
by Eq. (A6). with respect td1$)(e; ,€,):
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Go(€,€,5)=G(€,€;,S) 1
T Xoi=— 5 Q°2 SenS m/p™e)/p e w(er ).
—5 QX Gle e 9)x(e,e)Gle€).9) (B11)
' Thus, our approximate expression for the intermediate

+0(Q%. (B8)  scattering function is

Insertion of Eq.(B7) yields
q( )y S(Q,t)zz \/peo(fi)peo(ej)%: Si,mSj,me()\erXm)t-

Gol€i 1€ ,5) ! (B12)

= 1 From this expression it is seen that in the long time limit
= VP*(€i)/Peq €)) % S, mSjm[ S~ Aml only the term withm=0 contributes, since all others decay
faster due to the negative values\gf, m+ 0. (Note that the

1, . . Xm are negative definite. Remembering that S,
6 Q ; % S mSmS S VP &)/ P ) =p*Y &) and the normalization of the equilibrium popula-
o tions we find
XK(&'k,ﬂ)[S_)\m]l[S_)\n]l}. (Bg) S(Q,t)~ex0t for t—oo, (813)

Here, X, is given by
The most important terms in this expression are those with 1
n=m. We now neglect the other terms and treat them Xo=—= Q2> p€) >, ke, €)
terms of Eq.(B9) as the first terms of a geometrical series, 6 [ K
which we sum. This way we obtain

_ 2 Q%Y p*Ye)l(€)=— - QXT), (B14
Gqlei €j,9)=Vp*Y€)/p*A¢)) 6 T 6 '
: .y 1 cf. Eq. (22.
X§m: SimS;ml S~ Am=Xm] %, (B10) Comparison of Eg.(B13) with S(Q,t)=exd —(Q/
8R)?D+t] shows that the long time diffusion coefficient in the
where we have defined the correction terms: limit of small Q is given by Eq.(23).
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