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Rotational correlation functions and apparently enhanced translational diffusion
in a free-energy landscape model for thea relaxation in glass-forming liquids

Gregor Diezemann, Hans Sillescu, Gerald Hinze and Roland Bo¨hmer
Institut für Physikalische Chemie, Johannes Gutenberg-Universita¨t Mainz, 55099 Mainz, Federal Republic of Germany

~Received 7 July 1997; revised manuscript received 1 December 1997!

We explore a simple model for supercooled liquids in which reorientational and translational motions are
inherently coupled to the structural relaxation. Several controversial aspects of the molecular motion in glass-
forming materials are naturally resolved within the framework of our model. These include the geometry of the
molecular reorientations as well as the apparent enhancement of translational diffusion. The breakdown of the
Stokes-Einstein relation is thus explained without assuming the existence of local diffusion coefficients.
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I. INTRODUCTION

In a recent paper@1#, denoted as I in the following, a
free-energy landscape model was introduced in which
rotational molecular motion is associated with transitions
tween different dynamical~nonergodic, metastable! states,
i.e., with structural relaxation. In particular, it was assum
that molecular reorientation is completely determined by
ratesk(e,e8) of transitionse8→e connecting statese on a
free-energy hypersurface. This obviates the necessity of
ing to introduce the time scale for the reorientations se
rately. In other words, any transition from a molecular o
entationV to a different orientationV8 is associated with a
corresponding transition among the statese, which defines
the minima in the free-energy landscape. The model st
from a composite Markov process@2# @e(t),V(t)# from
which the non-Markovian process of molecular reorientati
V(t), is obtained as a projection from the composite proc
by integrating over all statese. The consequences of th
model for the evaluation of higher order correlation fun
tions were dealt with in I and then used to analyze rec
reduced four-dimensional NMR experiments@3–5#. How-
ever, it was also shown how the model can be applied
other experiments in which a selected subensemble is m
tored during its return to the dynamics of the full ensemb
such as, e.g., nonresonant dielectric hole burning@6#.

In the present paper, we apply the model to various ot
aspects ofa relaxation in supercooled liquids. A large num
ber of different experimental observations have been ac
mulated in the past decades that document a very rich
complex phenomenology of thea relaxation. Noab initio
theory is available for describing the dynamics of sup
cooled liquids close to the caloric glass transition tempe
ture Tg . Therefore it is not surprising that vastly differe
theoretical concepts have been developed in order to gi
phenomenologicaldescription. One such approach is the e
ergy landscape model, which has extensively been studie
the past@7–12# in various formulations~see Ref.@13# for a
recent discussion of the potential energy landscape pictu!.
The particular version presented in this paper aims at a q
titative ~or at least semiquantitative! description of a maxi-
mum number of experimental observations with a minim
571063-651X/98/57~4!/4398~13!/$15.00
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number of adjustable parameters.
One issue that we will address in detail is the nonex

nentiality of the response functions measured in superco
liquids. In comparing the results of relaxation functions o
tained in different experiments there is often a notable deg
of agreement, suggesting that these functions are domin
by the same or at least closely related molecular mec
nisms. Thus, it was observed that not only dielectric rel
ation @14# but also relaxation of poled mesogenic sidegrou
in polymers@15# occurs on the same time scale as entha
relaxation. Furthermore in dynamic light scattering expe
ments it has been found that the time scales for molec
reorientation and density fluctuations detected in VH and
scattering geometry@16# are similar.

It will be discussed further below that this agreement c
be understood within the free-energy landscape mode
will also explain certain differences in the degree of no
exponentiality expressed, say, by the stretching param
bK of the Kohlrausch function exp@2(t/t)bK# when consider-
ing correlation functions obtained by different experimen
techniques@17#.

The mean rotational correlation times^t l& where l de-
notes the rank of the Legendre polynomial~e.g., l 51 for
dielectric relaxation,l 52 for NMR or light scattering! were
found to be nearly independent of the rankl in supercooled
liquids close toTg , in particular^t1&.^t2&. This fact was
interpreted as evidence for molecular reorientation by lar
angle jumps, i.e., taken to rule out small-angle rotatio
diffusion @18–20#. This conclusion was challenged by Spie
during a general discussion on ‘‘viscous liquids and the gl
transition’’ @21# where he argued that it should be difficult
determine the difference between^t1& and^t2&, which often
amounts to a relative shift of a few percent within distrib
tions having a width of some decades@22#. He mentioned
that from two-dimensional~2D! NMR studies on polymeric
glass formers it has to be concluded that reorientations o
by small angular steps. In this discussion, Williams@23# ar-
gued on the basis of results from dielectric relaxation a
Kerr effect studies that the quality of the data obtained in
group was sufficient in order to rule out the small angu
step model. He rather favored the large angular~random!
jump model for the description of reorientations in sup
4398 © 1998 The American Physical Society
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57 4399ROTATIONAL CORRELATION FUNCTIONS AND . . .
cooled liquids likeo-terphenyl~see also the literature quote
in @24#!. As will be shown below~see Fig. 3! the present
model provides an explanation of why^t1&.^t2& can be
found in experiments although reorientation proceeds
small angular steps@25#. The occurrence of small angle pro
cesses was also inferred from2H-NMR stimulated echo ex-
periments in several supercooled liquids such aso-terphenyl,
toluene, and glycerol@26–29#.

Another example of an experimental finding that has
to controversial discussions is the enhancement of tran
tional diffusion in comparison with shear viscosity and ro
tional diffusion on approaching the glass transition@30–33#.
In the present model the apparent enhancement is see
arise from taking different averages over the transition ra
An important feature of our approach is that we arrive at t
resultwithout assuming the Stokes-Einstein and Debye re
tions to hold locally.

Finally, some comments on the use of a free-energy la
scape model are in order. We mention that the notion
free-energy minima inherently implies a coarse graining w
respect to the density of the liquid over a certain spa
extent. Neither the magnitude nor the temperature dep
dence of a length scale associated with this coarse grai
are known at present. Consequently, we will not attemp
give any estimates of the spatial extension of domains
regions in supercooled liquids.

The paper is organized as follows. In the next section
present the model used for the description of reorientatio
and translational motions in supercooled liquids. We th
discuss the question of the impact of different angular ju
models on experimental observables in Sec. III. Section IV
devoted to the application of the model to the translatio
diffusion of molecules and a discussion of the enhancem
of these as compared to rotations. After a discussion of
results in Sec. IV we close with some conclusions.

II. ACTIVATED DYNAMICS MODEL FOR ROTATIONAL
AND TRANSLATIONAL MOTION

IN SUPERCOOLED LIQUIDS

In this section we briefly recall the main ingredients of t
model for molecular reorientations in glass-forming liqui
proposed earlier in@1# and show how rotations and transl
tional diffusion can be treated on the same footing.

There are indications, e.g., from the mode coupling
proach to the structural glass transition@34# and from com-
puter simulations@35,36# of a thermally activated nature ofa
relaxation below a crossover temperatureTc located in the
moderately supercooled regime. This point of view has
ready been advocated by Goldstein almost 30 years ago@7#.
Explicit calculations based on a master equation appro
@8–11# have shown the ability of such an approach to
count for many aspects of the phenomenology of thea re-
laxation, such as the deviations from an Arrhenius law
the mean relaxation times or the stretching of the entha
relaxation functions.

Some models for the structural glass transition@12,37,38#
seem to provide evidence for the existence of a large num
of nonergodic states corresponding to different minima in
free-energy landscape in the supercooled liquid regime
low a dynamic crossover temperature.~Whether this tem-
n
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perature coincides with the mode coupling critical tempe
ture Tc is still an open question.! These states are viewed a
metastable since the free-energy barriers separating them
not appear to be macroscopic. Thermally activated dynam
proceeding via transitions in the free energy landscape
restores ergodicity.

In view of the lack of understanding of the mechanism
the activated processes in supercooled liquids, we utilize
approach that is similar to the one adopted by Brawer@8#,
Dyre @9#, and Bässler@10#. To each of the many minima in
the free-energy landscape we assign a metastable~glass!
state labeled by a single variablee. A density of states
~DOS!, h~e!, is used to account for the total number
minima betweene ande1de. Thea relaxation is then mod-
eled using a master equation@2#, which reads

Ġ~e,e0 ,t !52E de8k~e8,e!G~e,e0 ,t !

1E de8k~e,e8!G~e8,e0 ,t !. ~1!

Here,G(e,e0 ,t) denotes the conditional probability of find
ing the system in statee at time t if it was in statee0 at t
50 and the ratesk(e8,e) are those associated with trans
tionse→e8. Apart from the restriction that thek(e8,e) have
to obey detailed balance and that the form of the popula
of the states in thermal equilibrium is given by

peq~e!5Z21h~e!e2be, where Z5E depeq~e! ~2!

each specific choice for these transition rates defines a
tain model.

In all following calculations we use two models for th
k(e8,e) differing mainly in the connectivity of the states. I
both models we assume a common activation energyeA for
the escape out of the initial statee. One scenario we conside
is aglobally connected model~GCM! in which each statee8
can be reached from the initial statee. The destination state
are chosen randomly according to the DOS. The transi
rates for this model read

k~e8,e!5k̃`h~e8!e2b~eA2e!5k`h~e8!ebe. ~3!

Here b denotes the inverse temperature and we have
sorbed the common activation terme2beA in the attempt fre-
quencyk` . With the additional assumption of a Gaussi
DOS this model is equivalent to the one used by Dyre@9#
and corresponds to a random energy model@39# with a ki-
netics as studied by Shakhnovich and Gutin@40#. A slightly
different form than Eq.~3! was used in a model by Brawe
@8#.

The other case to be considered is alocally connected
model~LCM! where starting from a given statee only states
of very similar e8 can be reached. In this case the mas
equation~1! is reduced to a Fokker-Planck equation of t
form
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Ġ~e,e0 ,t !5
]

]e
@D~e!~b]U~e!/]e!G~e,e0 ,t !#

1
]2

]e2 @D~e!G~e,e0 ,t !#, ~4!

where we choose

D~e! ªk`ebe and U~e! ª2b21 ln@h~e!#. ~5!

In this form it is easily verified that the equilibrium solutio
is given by Eq.~2!. In a discrete form this model is similar t
the one employed recently to model the dynamics in a s
able glassy system@41#.

The reason that we use two quite different scenarios
our calculations is simply to demonstrate that differe
choices for the transition rates lead to results that differ o
quantitatively from each other, the main features being v
similar independent of the underlying model. Additional
we restrict ourselves to the choice of a Gaussian DOSh~e!.
This means that the mean relaxation times will have a Fe
like temperature dependence}exp(T0 /T)2 @42#. Other
choices can lead lead to different curvatures of the m
relaxation times as a function of temperature@11#. The use of
a Gaussian DOS allows an immediate interpretation of
width of the distribution of the equilibrium populations a
being proportional to inverse temperature. This is beca
Eq. ~2! now reads

pG
eq~e!5

1

A2ps
e2~e2 ē !2/~2s2!, ē52s2b. ~6!

In the following calculations we give the free-energy va
ablese as well as the widths in units of temperature and se
b51.

The model we use for both rotational as well as trans
tional motions relies on the assumption that the underly
dynamics is governed by thermally activated transitions
the energy landscape described above. Only if a transi
e→e8 occurs are the orientationV and the positionr of a
tagged molecule allowed to change. One consequence o
assumption is that the stochastic processesV(t) andr (t) are
not Markovian. However, the two-dimensional stochas
processes@e(t),V(t)# and @e(t),r (t)# are examples of so
called composite Markov processes@2#.

We model the changes inV and r by angular and trans
lational jumps, respectively, and then calculate the relev
correlation functions as observed in different types of exp
ments.

To start with let us recall the treatment of molecular
orientations as introduced in I. The transition ratesk(e,e8)
determine the changes in molecular orientationV. These
changes are modeled by angular jumps via an angleu. The
conditional probability for the composite Markov proce
@e(t),V(t)# obeys a master equation of the form

Ġ~$e,V%,$e0 ,V0%,t !5E de8E dV8WR~$e,V%u$e8,V8%!

3G~$e8,V8%,$e0 ,V0%,t !. ~7!
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Explicit expressions for the transition rate
WR($e,V%u$e8,V8%) are given in I. A solution of Eq.~7! is
achieved via an expansion in terms of Wigner rotation m
trices @43#

G~$e,V%,$e0 ,V0%,t !

5 (
l ,m,n

2l 11

8p2 Gl~e,e0 ,t !Dmn
l ~V!Dmn

l ~V0!*

and subsequent solution of the following integrodifferent
equations:

Ġl~e,e0 ,t !5E de8P l~e,e8!Gl~e8,e0 ,t !, with

P l~e,e8!52E de9k~e9,e!d~e2e8!

1P„cos~u!…k~e,e8!@12d~e2e8!#. ~8!

HerePl„cos(u)… denotes a Legendre polynomial of rankl . If
random reorientational jumps are assumed, one has to
placePl„cos(u)… by d l ,0 @1#. Note that the model of small ste
angular diffusion is obtained in the limitu→0. From the
structure of the matrixP l(e,e8) the model assumption tha
an angular jump occurs only together with ane→e8 transi-
tion is immediately evident. The rotational correlation fun
tions for thel th rank Legendre polynomials are given by

gl~ t !5
^Pl„V~ t !…Pl„V0~0!…&

^Pl„V~0!…Pl„V0~0!…&

5E deE de0peq~e0!Gl~e,e0 ,t !. ~9!

These functions are given as inhomogeneous superposi
of exponential decays with apparent reorientation rates de
mined by the eigenvalues of the matricesP l(e,e8).

In order to describe the translational motion of the m
ecules we proceed in exactly the same manner as in the
tational case. We assume that with each transition among
metastable states associated with free-energy minimae there
is an associated transitionr→r 8. The dynamics of the com
posite Markov process@e(t),r (t)# is then governed by the
master equation

Ġ~$e,r%,$e0 ,r0%,t !

5E de8E dr 8WT~$e,r%u$e8,r 8%!G~$e8,r 8%,

3$e0 ,r0%,t), ~10!

which is completely analogous to Eq.~7!. Let us denote the
rate for a jump from positionr 8 in statee8 into position r
associated with statee by L(r ,r 8). We then have for the
transition matrix:

WT~$e,r%u$e8,r 8%!52 H E de9k~e9,e!J d~r2r 8!d~e2e8!

1L~r ,r 8!@12d~e2e8!#. ~11!
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In principle one would need a detailed model for the tran
tion ratesL(r ,r 8). Since we are interested in the descripti
of scattering experiments that employ relatively small m
mentum transfers, the details of such a model on a mic
scopic length scale are not of importance. We assume
the displacements proceed via small jumps of lengthdR.
Then the quantityqdR gives the experimentally relevan
scale, ifq denotes the modulus of the scattering vector. Ty
cally, we will be concerned withqdR,1. If qdR!1 holds
additionally, then as is shown explicitly further below one
in the regime of Fickian diffusion. For simplicity we con
sider the following model: We assume that all sites in
which a molecule can jump lie on a sphere of radiusdR
around its initial position, thus enforcing isotropy from th
outset. Equivalently one could start from a lattice model a
then average over all spatial directions at the end of the
culations@44,45#. Of course in a real liquid there will be
distribution of elementary jump lengths but this complicati
will not be taken into account here. Additionally, we no
that the translational motions associated with transiti
among different metastable statese are expected to be highl
cooperative. However, here we are mainly concerned w
tagged particle motion and thus also neglect this further c
plexity of the problem in the following considerations.

Equation~10! is dealt with in the following way. We per
form a Fourier transform

Gq~e,e0 ,t !5
1

~2p!3 E dr eiq•rG~$e,r%,$e0 ,r0%,t !

~12!

and solve the integrodifferential equations (q5uqu):

Ġq~e,e0 ,t !5E de8Pq~e,e8!Gq~e8,e0 ,t !. ~13!

Here we have made use already of isotropy and the ma
Pq(e,e8) is given by

Pq~e,e8!52E de9k~e9,e!d~e2e8!

1 j 0~qdR!k~e,e8!@12d~e2e8!#, ~14!

with j 0(x)5sin(x)/x denoting a Bessel function. If we intro
duce the reduced scattering vector

Q ªqdR ~15!

it is obvious thatGq(e,e0 ,t) depends only onQ, that is,
Gq(e,e0 ,t)[GQ(e,e0 ,t).

The incoherent intermediate scattering function@45# is
now easily evaluated to be given by

S~Q,t !5E deE de0peq~e0!GQ~e,e0 ,t !, ~16!

which for Q!1 decays exponentially}exp(2q2DTt) with an
effective diffusion coefficient DT . This means that we do no
assume Fickian diffusion to hold butcalculatethe effective
diffusion constant from our model.

For other choices of the transition ratesL(r ,r 8) the
Bessel function occurring in Eq.~14! would have to be re-
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placed by some other function, which, however, also has
tend towards the limit 12 1

6 (Q)2 for Q→0 since otherwise
there would be no diffusive regime at all.

In all the following numerical calculations we use discre
versions of Eqs.~1! and ~4!, as discussed in I. The integra
occurring in the master equation~1! are replaced by sumsi
51¯N over discrete valuese i spaced homogeneously wit
a distanceD5e i 112e i and the transition ratesk(e,e8) are
written ask(e i ,ek). Then the Fokker-Planck equation~4!
may be viewed as a master equation with transition rate

k~ek ,e i !5k`ebe i/D2$h~ek!/h~e i !%
1/2dk,i 61 ,

wheredk,i 61 denotes a Kronecker symbol. Analogously, t
integrals appearing in Eqs.~8! and ~13! are converted to
sums.

When comparing the expressions for the rotational co
lation function and the scattering functions as well as th
for GQ(e,e0 ,t) and Gl(e,e0 ,t) the close interrelations be
tween the latter within the framework of our model becom
apparent. Nevertheless the characteristic time scales fo
decay of the rotational correlation functions on the one ha
and forS(Q,t) on the other will turn out to be different whe
compared as a function of the width of the DOS that is
inverse temperature; see below.

III. ROTATIONAL CORRELATION FUNCTIONS

We first turn to the controversy concerning the magnitu
of the jump angles characterizing the reorientational moti
of molecules in the supercooled liquid regime. If one cons
ers angular jump models for the rotations@46#, the ratio of
the correlation timeŝ tn&/^tm& with n,m51,2,3, . . . is
given by

^tn&/^tm&5$12Pm„cos~u!…%/$12Pn„cos~u!…%. ~17!

Here, we have defined the correlation time as the time in
gral of the corresponding rotational correlation functi
gl(t):

^t l&5E
0

`

dt gl~ t !. ~18!

We note that our model defined via Eq.~8! yields a single
exponentially decaying correlation function if we allow on
for two values ofe with equal weightspeq(e1)5peq(e2)
51/2. In this case the correlation time is given byt l

21

5k$12Pl„cos(u)…%, wherek[k(e1 ,e2) denotes the transi
tion rate.

In the case of small step rotational diffusion, one h
^t1&/^t2&53 and in the case of random reorientational jum
models one findŝt1& to be independent of the rankl and
thus ^t1&/^t2&51. It is usually then assumed that values
this ratio in the range of 1–2 indicate the predominance
large angular jumps.

In Fig. 1 different first rank rotational correlation func
tions g1(t) calculated using Eq.~9! are shown for transition
rates chosen according to the GCM, Eq.~3!. The width of the
Gaussian DOS is set tos52.0. Note that this quantity is
dimensionless since, as noted below Eq.~6!, we have setb
51. The different curves correspond to different jump ang
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4402 57DIEZEMANN, SILLESCU, HINZE, AND BÖHMER
u. The triangles are foru51°, the squares foru510°, and
the circles are calculated assuming isotropic angular ran
jumps. It is to be noted that the ‘‘angular jump correlati
function’’ defined in Ref.@5# and discussed more extensive
in I for all three cases is identical to the function represent
the random jump model. This is because the assumptio
random angular jumps implies a complete loss of correla
after each jump. This is also the reason for the fact that
the case of random rotational jumps allgl(t) decay identi-
cally, independent of the rankl .

The following two features are evident from Fig. 1: Th
mean decay time ofg1(t) becomes longer as the angul
jump angleu decreases. Additionally, the stretching of t
decay decreases with decreasingu. Both effects can be un
derstood as consequences of the fact that a smaller an
jump angle leads to a more effective averaging over the
→e8 transitions and thus over the DOS. Consequently
decay of the rotational correlation functions tends to a m
exponential form with decreasing jump angle. It should
realized that a complete average over the DOS would y
an exponentially decaying correlation function. The prolo
gation of the decay is easily understood since for small ju
angles more angular jumps are required in order for the
tational correlation function to decay.

We have calculated the rotational correlation functio
gl(t) for various values of the widths of the DOS~} inverse
temperature! and for both the GCM, Eq.~3!, and the LCM,
Eqs. ~4! and ~5!. For representational convenience the
functions are then fitted to a Kohlrausch expression,

gl~ t !5e2~ t/t l !
b l.

The dotted lines in Fig. 1 represent such fits. Some results
the stretching parametersb l from these fits are shown in Fig
2. We note that the fits to this expression are not always v
good, especially for large values of the widths and large
jump angles, where the calculated correlation functions sh
a prolonged decay as compared to the Kohlrausch law
Fig. 1 and also the discussion in Ref.@5#. Nevertheless, the
values ofb l give a good measure for the stretching of t
gl(t). In Fig. 2~a! the exponentsb1 are shown as a function
of s for an angular jump model withu55°. It is seen that
with increasing width of the DOS the stretching becom

FIG. 1. Rotational correlation function of rankl 51, g1(t) cal-
culated for an angular jump model with various jump anglesu with
a kinetics chosen from the GCM, Eq.~3!. The calculations were
performed for random jumps~RJ! and several jump angles~sym-
bols!. The dotted lines represent fits to a Kohlrausch function.
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more pronounced. Furthermore it is evident that within t
GCM ~full line! a more efficient averaging over the DO
occurs than in the LCM~dashed line! leading to larger values
for b1 . This is to be expected since even though in bo
cases the same number of transitions are necessary fo
rotational correlation function to decay, in the GCM ene
getically more distinct statese are sampled with a given
number of transitions. This leads to a more effective aver
ing over the DOS.

Figure 2~b! illustrates the difference in the stretching
rotational correlation functions of different rank. The sol
lines showb1 and the dashed linesb2 . The upper curves are
calculated assumingu55° and the lower ones foru515°
using the GCM. It is seen that the stretching is more p
nounced forg2(t) at a given width of the DOS than it is fo
g1(t). The reason for this is simply that forl 51 the orien-
tations have to change roughly by 90° before the rotatio
correlation function has decayed whereas in the casel
52 about 54° are sufficient for decorrelation. This mea
that moree→e8 transitions are required forg1(t) to decay
than for g2(t). This same argument is responsible for t
different widthss at which significant deviations ofb l from
unity become obvious for the first time. The number ofe
→e8 transitions involved in the decay of the rotational co
relation functions determines the efficiency of the dynami
averaging over different statese. Thus,b2 starts to deviate
from 1 at a smaller value ofs thanb1 .

We now turn to a comparison of the characteristic dec
times of the differentgl(t). We calculated thêt l& according
to Eq. ~18! and plot the results in Fig. 3 for various jum
angles. From that plot it is immediately evident that in t
case of a sufficiently broad DOS (s.2) the ratio^t1&/^t2&

FIG. 2. ~a! Stretching parameterb1 vs the widths as obtained
from fits of rank 1 rotational correlation functions for jump ang
u55° for the GCM, Eq.~3! and the LCM, Eq.~4!. ~b! Stretching
parametersb1 andb2 vs s for the GCM.
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does not tell anything about the geometry of the molecu
reorientations within the framework of our model. The re
son is that there is an intrinsic dynamical averaging tha
different for rotational correlation functions of differen
ranks l . As one can see from Fig. 3 a broader DOS and
correspondingly a smaller value of the stretching parame
b l ~cf. Fig. 2! leads to more similar values of^t1& and^t2&.

In order to understand this behavior in more detail let
first consider the initial decay rate~at t!^t l&) of the rota-
tional correlation functions as defined by

~t l
in!2152 lim

t→0
ġl~ t !.

As shown in Appendix A from Eq.~9! in conjunction with
Eqs.~7! and ~8! one finds

~t l
in!215$12Pl„cos~u!…%E de peq~e!G~e!. ~19!

Here as in I we have defined the effective decay rate of s
e by

G~e! ªE de8k~e8,e!. ~20!

For large enough temperatures, i.e., widthss of the DOS that
are small enough to allow an effective averaging during
decay of the rotational correlation functions these decay
ponentially and the initial decay time coincides with the c
relation time,t l

in5^t l&. Only for this case can Eq.~17! be
used to extract a jump angle. Due to the different degree
dynamical averaging over the DOS inherent in the deter
nation of different^t l&, as we have seen, Eq.~17! is not
applicable. However, if this expression is rewritten in ter
of the initial decay constants, then oneis able to deduce a
mean jump angle. This obviously is because thet l

in are com-
pletely independent of any dynamical averaging, since t
reflect a short time property (t!^t l&).

From the calculations presented here it is clear that
apparent discrepancy between the NMR results of ra
small step angular reorientations on the one hand side
the fact of the already mentioned similarity of^t1& and^t2&
can easily be resolved within our model. We note tha
staticdistribution of reorientation rates would yield a ratio

FIG. 3. The ratio of the correlation times as defined in Eq.~18!
for l 51 andl 52, ^t1&/^t2& for various jump angles as a functio
of the widths of the DOS using the GCM. Also shown is a calc
lation with the LCM foru51°.
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^t1&/^t2&.3 for all angular jump models we considered
can be seen from the limit of smalls in Fig. 3.

IV. APPARENT TRANSLATIONAL ENHANCEMENT

We have seen above that a model in which a distribut
of apparent reorientation rates originates from different tr
sition ratesk(e,e8) yields quite different results for variou
rotational correlation functions depending on the number
e→e8 transitions necessary for the correlation function u
der consideration to decay. Since the required average n
ber of transitions is determined by the rank of the rotatio
correlation function the various jump models considered le
to different decay characteristics. The choice to use a spe
experiment sensitive to reorientational motions sets therota-
tional resolution. Using the translational jump model intr
duced in Sec. II it is the choice of the scattering vectorq that
tells us about thespatial resolution of the experiment an
thus about the number of elementary jump events avera
over during the experiment. Thus, conceptually,q in a scat-
tering experiment plays a similar role as the rankl in case of
rotational correlation functions.

We proceed in a way that is similar to the computation
the rotational correlation functions in that we calculate t
intermediate scattering function according to Eq.~16! as a
function of the reduced scattering vectorQ and fit the results
to a Kohlrausch function:

S~Q,t !5e2~ t/tQ!b
Q.

In Fig. 4 we plotted 1/tQ versusQ2. Only for Q values
smaller than roughly 0.1 is 1/tQ proportional toQ2. This
means that we expect Fickian diffusion to be observed o
length scale of approximately ten times the average elem
tary jump length. In that case the scattering function dec
exponentially as exp@2(Q/dR)2DTt# and we identify 1/tQ
with (Q/dR)2DT . The width parameterbQ decreases only
slightly below unity for largeQ. For Q510 we havebQ
50.91 for the GCM~solid line! andbQ50.86 for the LCM
~dashed line!. Of course, outside the diffusive regime (1/tQ
}Q2) the behavior of 1/tQ , especially the curvature of 1/tQ
as a function ofQ, strongly depends on the model used f
the elementary jump process, cf. the discussion in Sec
Also the different efficiency in the dynamical averaging ov

FIG. 4. Inverse decay time of the incoherent intermediate s
tering function vs the square of the modulus of the scattering ve
as defined in the text. The dotted line represents the diffusive
havior, 1/tQ}Q2.
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the DOS in the GCM and the LCM is clearly evident fro
Fig. 4. As already pointed out above, we are only interes
in the diffusive regime, thus our results will not rely on th
jump model.

Within our model the decay constant 1/tQ5(Q/dR)2DT
can be calculated analytically in the limit of smallQ values,
$12 j 0(Q)%. 1

6 Q2. In close analogy to experimental dete
minations of the long time diffusion coefficient we compu
the long time limit ofS(Q,t) for small Q. Since the actua
calculation is rather lengthy, we defer it to Appendix
Here, we only note that the result of this calculation ag
does not depend on the jump model as its validity is
stricted to the diffusive regime. One finds that the decay
S(Q,t) is exponential for long times and the decay time
given by

~tQ
diff !215

1

6
Q2E de peq~e!G~e!. ~21!

For later convenience we additionally define theaverage
rate ^G&:

^G& ªE de peq~e!G~e!, ~22!

where the ratesG~e! are those defined in Eq.~20!. With the
definition of ^G& it is obvious that the translational diffusio
coefficientDT is determined bya rate average:

DT5
dR2

6
^G&. ~23!

Note that this expression holds only for smallQ values.
Alternatively, the decay constant ofS(Q,t) as calculated

from the initial slope@2Ṡ(Q,t→0)# analogous to Eq.~19!
~cf. Appendix A! yields the same result in the smallQ limit.
In this calculation the limitt→0 is to be understood ast
!1/@(Q/dR)2DT#, since we are solely concerned with th
decay ofS(Q,t) due to translational motions that are asso
ated witha relaxation and not with processes on shorter ti
scales. In the case of small scattering vectorsS(Q,t) is ex-
pected to decay exponentially in the time regime relevant
our considerations and the translational diffusion coeffici
is given by Eq.~23!. In this case the short time diffusio
coefficient and the long time diffusion coefficient coincide
is to be expected for ordinary Fickian diffusion. We menti
that relation~23! was checked numerically by compariso
with the values forDT as obtained from fits toS(Q,t).

Next, we compare the values oftQ51/@(Q/ddR)2DT# in
the diffusive limit with the rotational correlation times. I
Fig. 5~a! the results for the temperature dependence of
correlation times are shown for the GCM. The solid line
tQ and the other ones represent^t2& for different angular
jump models. It is clear that a strong deviation between
time scales for translation and rotation appears as soon a
width of the DOS exceeds a certain value. This width is
same as the one at which the deviations in^t1&/^t2& from
their static values (;3) and also the deviations ofb2 from 1
occur. Additionally, it is seen in Fig. 5~a! that larger angular
jump anglesu lead to a larger discrepancy between the ro
tional and the translational correlation times. This is eas
d

n
-
f

-
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r
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e
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understood because of the different number ofe→e8 transi-
tions necessary for the rotational correlation function to
cay and the associated different averaging over the DOS
already discussed in connection with the rotational corre
tion times. As in all cases discussed before there are o
slight quantitative differences when the LCM and the GC
are compared.

The dotted curve in Fig. 5~a! has been calculated assum
ing random angular jumps. That means that each reorie
tional jump leads to a complete decorrelation of molecu
orientation. Therefore, this is the model that produces
maximum difference between rotation and translation, si
in this model no averaging over the different statese occurs
in the case of the rotational correlation function. Since
Legendre polynomials occuring in Eq.~8! are replaced by
d l ,0 in this case, we can calculate the correlation times^t l&
analytically from Eq.~8!, yielding

gl
RJ5E de peq~e!e2G~e!t for lÞ0 , ~24!

where the superscript RJ stands for random reorientatio
jumps. Consequently we have

^t l
RJ&5E de peq~e!

1

G~e!
[^G21&. ~25!

FIG. 5. ~a! Rotational correlation times of the second rank ro
tional correlation function̂t2& and the decay timetQ of S(Q,t) in
the diffusive regime (Q<0.001) vss for the GCM using different
jump anglesu. The dotted line was calculated assuming isotro
random angular jumps. Note that^tRJ& is independent ofl . All
correlation times are scaled to unity fors50. ~b! The product of
the translational diffusion coefficient and the rank 1 rotational c
relation times for various jump angles using the LCM vss. The
products are scaled to unity ats50.
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57 4405ROTATIONAL CORRELATION FUNCTIONS AND . . .
Therefore, the correlation time is just given by the average
the inversedecay rates. For finite angular jumps, the cor
lation times are still given bytime averagesinstead ofrate
averagesbut these times are determined by the eigenval
of the corresponding matricesP l(e,e8) in Eq. ~8!. Since
these eigenvalues determine the effective rotation rates
the considered angular jump model,^t l& is given as an av-
erage over the effective distribution of apparent rotatio
correlation times.

Figure 5~b! shows productŝt1&DT for the LCM as cal-
culated for various angular jump models versus the width
the DOS. If the Stokes-Einstein and Debye relations wo
hold, these products should be constant. There is, howev
remarkable increase of the rotational correlation times
compared to the translational diffusion coefficient. Acco
ing to what we discussed above there are two partly com
ing effects. The main effect is that the translational diffusi
coefficientDT is determined by the average decay rate^G&
whereas the rotational correlation times are given as t
averages. The maximum apparent translational enhance
is found for random reorientational jumps and in this ca
one has within our model

DT^t l
RJ&5

dR2

6
^G&^G21&. ~26!

We note that the different averages inherent in the defini
of the translational diffusion coefficient and the rotation
correlation times have been used as a possible explanatio
the apparent translational enhancement quite some time
@47#. These different averages also have been assumed
responsible for the apparent translational enhancement i
previous models known to us@30–32#. However, in all these
models it was assumed that the Stokes-Einstein and De
relations hold locally and that the averages performed
averages over distributions of local rotational correlat
times and local translational diffusion coefficients, resp
tively. In our present model we do not assume local corre
tion times or even diffusion coefficients, but the differe
averaging originates from different weights of the transiti
ratesk(e,e8) in the free-energy landscape.

There is, however, another competing effect, which h
not to our knowledge been considered earlier and is a di
consequence of the model presented here. If small ang
jumps are used to model the rotational motion of the m
ecules, the maximum apparent translational enhancem
Eq. ~26!, is diminished due to the dynamical averaging ov
thee→e8 transitions performed inherently when consideri
rotational correlation functions of any rankl . The limit that
is to be considered in case of exponentially decaying ro
tional correlation functions is given by

DTt l
in5

dR2

6
$12Pl~cos~u!!%21, ~27!

where t l
in is defined in Eq.~19! and is determined by the

average decay ratêG& just as the translational diffusion co
efficient.
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V. DISCUSSION

In the last two sections we showed that the model int
duced in I can be used for a coherent description of both
translational and the rotational motions of molecules in
percooled liquids. The central assumption of our model c
sists in a tight coupling of the respective degrees of freed
to the activated dynamics responsible for thea relaxation.

In the case of rotational correlation functions we saw t
the rank l of these functions determines the number of
ementary transitions necessary for the correlation functio
decay. As a larger number ofe→e8 transitions leads to a
more effective averaging over the DOS~for given widths!
we find different behaviors of the rotational correlation fun
tions as a function of the rankl and additionally of the mean
jump angle. We saw that the ratio of the mean correlat
times ^t1&/^t2& is almost independent of the magnitude
the jump angles but is determined by the inherentdynamical
averaging over the DOS. Therefore, this ratio is given by
static value~which is approximately 3 for small jump angles!
only for very small widths of the DOS since in that case
rotational correlation functions average effectively over t
complete set of metastable statese. This also is reflected in
the fact that for these small widths the rotational correlat
functions decay nearly exponentially. In the other extreme
large widths the ratiô t1&/^t2& approaches unity indepen
dent of the magnitude of the jump angles, since then
different efficiency of the dynamical averaging is determin
by the different number of transitions required for the ro
tional correlation functions to decay, leading to a faster
cay of the correlation function of rankl 51.

The consequence of these considerations is that a
crimination of various models of reorientational motion
supercooled liquids is not possible in terms of a compari
of correlation times as obtained from different experimen
methods. This is an inherent property of our model. All mo
els in which averages overstatic correlation time distribu-
tions are performed yield the static values^t1&/^t2&, which
correspond to our values in the limit of vanishings. How-
ever, within the framework of such models the experimen
observation of small step reorientations in fragile gla
forming liquids is inconsistent with the other experimen
finding that^t1&.^t2&. The model we propose here, on th
other hand, provides a simple explanation of these obse
tions, i.e., we have ratioŝt1&/^t2& between 1 and 2 also fo
models with small angular jumps. Thus our model is able
explain the similarity of the rotational correlation times
different ranksl @18–20# andsimultaneouslythe fact that the
reorientations proceed via small angular steps, as foun
NMR experiments@27–29, 48#.

In the case of translational motion, we assumed a sim
jump model for the elementary translational steps, wh
leads to Fickian diffusion on a length scale large compa
to the mean jump lengthdR. We showed that rather larg
apparent translational enhancements occur as a functio
the width of the chosen DOS. Since this width is rough
proportional to inverse temperature that means that we
pect an increasing translational enhancement with decrea
temperature in qualitative accord with experiment.

In order to see how useful our model is when trying
estimate parameters that are relevant in the supercooled s
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we compare some predictions concerning the apparent tr
lational enhancement with experimental results on ort
terphenyl~o-TP!. We use the values ofb1 from dielectric
experiments@49# of Dixon et al. @50,51#. From Fig. 2 of Ref.
@50# we read off the values ofb1;0.42 and 0.53 at approxi
mate temperaturesT;Tg5243 K and T;280 K, respec-
tively. A slight extrapolation of the published data yield
b1;0.59 atT5290 K. This last temperature is the one
which upon cooling the ‘‘decoupling’’ of translational an
rotational diffusion becomes significant@26,48#. Since in
these experiments the rotational functions of rankl 52
~NMR! have been determined, we transform the quoted
ues ofb1 to the widthss of our model DOS~cf. Fig. 2! and
then calculate the correspondingb2 from these widths. In
doing so we additionally make use of the result that the m
angular jump angle ino-TP is approximatelyu.10° @48#.
This way we obtains(243 K).3.4, b2(243 K).0.35, and
s(290 K).2.7, b2(290 K).0.51 for the GCM. The corre
sponding values for the LCM ares(243 K).3.2,
b2(243 K).0.37, and s(290 K).2.3, b2(290 K).0.53.
We mention that these values forb2(243 K) are compatible
with those obtained from2H-NMR @26,48#.

In order to compare the apparent enhancement of tran
tional over rotational diffusion predicted by our model wi
the experiments ono-TP we have plotted the product^t2&
DT as a function ofs in Fig. 6. There we scaled this produ
to unity at that widths which corresponds to 290 K. A
already mentioned above, the respective values ares52.7
for the GCM ~full line! and s52.3 for the LCM ~dashed
line!. This means we match the temperature dependence
the rotational and the translational time scales at high t
peratures, a procedure that is often adopted when dea
with experimental data. At the corresponding widthss~243
K!, the apparent translational enhancement is about 1.
decades. This value is to be compared with the experim
tally found enhancement of roughly 2 decades@26,48#. Thus,
the simple estimate presented here is in accord with exp
ment. However, we think this coincidence should not
overemphasized in view of the crude simplifications inher
in our assumption. The assumption of a single jump angl
of course a serious drawback in a quantitative estimate.
to be expected that the jump angles are distributed and
the mean jump angle should decrease somewhat when

FIG. 6. Product^t2&DT vs sscaled5@s2s~290 K!#/@s~243 K!
2s~290 K!# for the GCM as well as for the LCM assuming a jum
angleu510° for the parameters chosen in a way as to repre
o-TP; see text. In particular this means^t2&DT has been scaled to
unity at as that corresponds toT5290 K.
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proachingTg from above, as has been observed in glyce
@29#. Unfortunately, the temperature dependent variation
the mean jump angle is not available foro-TP at present.
Another aspect to be borne in mind is the fact that the
sumption of a Gaussian DOS has no other meaning tha
model parametrization and other choices will lead to qua
tatively different results. The overall trends, however, a
independent of these model assumptions. Therefore,
think that our model calculations are in qualitative acco
with the experimental findings.

From the experimental diffusion coefficients we can gi
an estimate of the elementary jump lengthdR in our model.
We use the values for the rotational correlation times a
diffusion coefficient atT5290 K, ^t2&.431028 s andDT

.2310213 m2 s21 from the work of Changet al. @48# and
neglect the different dynamical averaging inherent in th
values for a moment. Then we can estimate the mean tra
tion rate assuming 10° angular jumps according to^t2&
;^k&21 $12P2„cos(u)…%21 as ^k&;5.63108 s21. From
this value we obtain dR;0.46 Å when using DT

5(dR2/6)^k&. This value roughly corresponds todR
.0.2RH , whereRH is the hydrodynamic radius quoted fo
ano-TP molecule@26#. This small value fordR is consistent
with the observation of Stillinger and Weber@52# that par-
ticles move only about one-tenth of their diameter in a tra
sition between potential energy basins and also the assu
tions of Hall and Wolynes@53# in their density functional
analysis of the free-energy barriers in hard sphere glas
Additionally, it is compatible with the observation of Wuttk
et al. @54# of a crossover to diffusive dynamics in the wav
number range of 1 and 0.1 Å in their study of tagged parti
motion in glycerol.

It should be noted that the rough estimate ofdR based on
the relationt l

21.k21$12P2„cos(u)…%21 @see the discussion
below Eq.~18!# is not possible for larger widthss at lower
temperature because of the different dynamical averaging
herent in the determination of the translational diffusion c
efficient and the rotational correlation times. However, t
conclusion drawn in Ref.@48# that the rms displacement o
an o-TP molecule during the mean rotational correlati
time ^t2& is given by (6DT^t2&)

1/254.7 nm atTg5243 K is
in full harmony with our model since we are certainly in th
diffusive limit at these large displacements. Thus the tra
lational diffusion coefficient is determined by the rate av
age @cf. Eq. ~23!# whereaŝ t2& represents an average ov
inverse effective reorientation rates.

Since the mechanism for the apparent translational
hancement is given by the different averages involved in
calculations of the translational diffusion coefficient and t
rotational correlation times, we predict that there should
no enhancement if the initial slopes~determined att!^t l&!
of the rotational correlation functions are compared to
translational diffusion coefficient. The product of the initi
decay timet l

in and the translational diffusion coefficient
given by Eq.~27!. This ratio is independent of the averag
over the decay rates since both quantities are determ
solely by ^G&. On the other hand, within our model a com
parison of the initial decay timet l

in with the translational
diffusion coefficient could be used to obtain informatio
about the geometry of the rotational motion of the molecul

nt
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If Eq. ~27! is evaluated for a mean reorientational jump an
of u510°, one finds a value oft1

inDT that is larger by a
factor of ;65 as compared to the corresponding value
random reorientational jumps.

VI. CONCLUSIONS

In this paper we examined the consequences of a v
simplistic model for some aspects ofa relaxation in super-
cooled liquids. Since noab initio theoretical description o
the dynamical behavior of supercooled liquids exists
present, we use a simple phenomenological model. T
model is based on the assumption that below a certain t
perature~located in the moderately supercooled regime! er-
godicity in the liquid is broken on short time scales a
restored on longer time scales by thermally activated tra
tions among the metastable states. We modeled this activ
dynamics in terms of a master equation. Since the mode
of the transitions among the metastable states is not our m
concern, we again used very simple kinetic postulates for
transition rates, differing only in their respective connect
ity. We used two distinct connectivities in order to show th
the details of the model for the transition rates do not cha
the overall picture, which is in qualitative~or even quantita-
tive! agreement with experiment. The modeling of the ro
tional and translational degrees of freedom is in the focus
our computations. We assume that only in connection wit
transition among the metastable glassy states can the
ecules undergo a reorientational as well as a translati
elementary process. In the present article we restricted
selves to dynamics associated with thea process; faster~b!
processes are planned to be incorporated into the mod
the future.

We modeled both the reorientational as well as the tra
lational motions in terms of finite jump models. That mea
we assumed that the rotation of molecules proceeds via fi
~though essentially small! angular jumpsu and the transla-
tional motion via jumps of a mean distancedR. We then
showed that concerning the rotational motion such a sim
model is able to shed light on some heretofore unresol
aspects with regard to the geometry of the rotations in su
cooled liquids. A comparison of rotational correlation tim
of different ranksl , specifically the ratiô t1&/^t2&, usually
is found to be;1. This is often taken to indicate the pre
dominance of large angular jumps. In fact, it has long be
assumed that the angular jump angles are large in fra
supercooled liquids. On the other hand the only meth
known to us capable of providing detailed information abo
the jump angles is the so-called stimulated echo and rel
two-dimensional NMR techniques. In the case of glycer
toluene, ando-TP these experiments clearly show that ty
cal mean elementary reorientation angles are on the orde
10° @26,27,29,48#. We have shown that our model yield
ratios of ^t1&/^t2&;1 also for such small angles due to th
inherent dynamical averaging over the DOS of metasta
glassy states. The reason for this finding lies in the fact
for rotational correlation functions of different rank differe
numbers of transitions are required in order for the corre
tion function to decay.

When our model is applied to translational motions in t
diffusive regime, it is possible to define a translational diff
e
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sion coefficient from the decay constant of the incoher
intermediate scattering function. Within the model the tra
lational diffusion coefficient is determined by an avera
over all transition rates among the metastable states. A c
parison of the diffusion coefficient with the correspondi
quantity from rotational correlation functions shows a d
matic apparent translational enhancement. This is in qua
tive accord with what is observed experimentally. As in e
lier models@30–32# the apparent translational enhanceme
has its origin in the different averages involved in the calc
lations of the translational diffusion coefficient and the ro
tional correlation times. However, within the approach d
veloped here it is not necessary to introduce local diffus
coefficients as also assumed, for instance, in Ref.@55#. Con-
sequently, we do not rely on spatial dimensions of, e.g.,
mains that are large enough to allow Fickian diffusion to
a valid description. Additionally, we were able to show th
the apparent translational enhancement should vanish i
ther the initial decay time of the rotational correlation fun
tions are considered or these correlation functions decay
ponentially in time.

We note that we have used the same model in orde
describe the results of reduced four-dimensional NMR
periments@1# and were able to show connections betwe
different experimental findings associated witha relaxation
in supercooled liquids that had been interpreted as indep
dent features before.

In particular, it is not necessary to introduce a second ti
scale for environmental fluctuations. In effect,a relaxation is
described by a remarkably small number of adjustable
rameters in our model. If a Gaussian density of free-ene
statesh~e! is assumed, its widths and the attempt frequenc
k` @see Eq.~3!# provide the input into Eqs.~1!, ~8!, and~13!
for describing rotational and translational molecular motio
The knowledge of the rotational jump angleu is sufficient
for determining the different mean rotational correlati
times, stretching parameters, and the amount of appa
translational enhancement as a function of the widths ~see
Figs. 2–6!.

Concerning heterogeneity, our model has an intrinsic
namical heterogeneous structure but nothing can be
about spatial aspects of this heterogeneous behavior. In o
to obtain such information a more detailed understanding
the activated dynamics in supercooled liquids would be
quired. We speculate, however, that the free-energy varia
e we used to label the metastable glass states should
function of some coarse grained density. What the appro
ate length scale for coarse graining might be is an open q
tion at present in our view.

We close by noting that even though the nature ofa re-
laxation in supercooled liquids is far from being understo
theoretically we are nevertheless able to explain several
perimental findings with a simple model that is based on
assumption of a strong inherent coupling of the rotatio
and translational dynamics to the underlying ‘‘true’’ glas
dynamics.
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APPENDIX A: THE INITIAL DECAY RATES

Here, we sketch how the expressions for the initial de
rates (t l

in)21, Eq. ~19!, and (tQ
diff)21, Eq. ~21!, are obtained

from the master equations~8! and ~13!. In order to treat the
case of orientational correlation functionsgl(t) and the inco-
herent scattering functionS(Q,t) on the same footing, we
introduce a correlation functionFx(t) with Fx(t) represent-
ing gl(t) or S(Q,t), respectively. Thus,x denotes eitherl in
the case of reorientations orQ if translations are considered
In the same way, Eqs.~8! and~13! can be written in a unique
way:

Ġx~e,e0 ,t !5E de8Px~e,e8!Gx~e8,e0 ,t ! ~A1!

with

Px~e,e8!52G~e!d~e2e8!1c~x!k~e,e8!@12d~e2e8!#;
~A2!

cf. Eqs.~8! and ~14!. Furthermore, we have used the defin
tion Eq. ~20! of the effective decay rateG~e!. In Eq. ~A2!
c(x) stands for the Legendre polynomialPl„cos(u)… in the
reorientational case and for the Bessel functionj 0(Q) in the
case of translational motion. The correlation function
given by

Fx~ t !5E deE de0peq~e0!Gx~e,e0 ,t !. ~A3!

We now define an instantaneous decay rate via

@tx~ t !#21
ª2Ḟ~ t !/F~ t !. ~A4!

Insertion of Eq.~A3! yields

@tx~ t !#215@12c~x!#E de0peq~e0!E de G~e!Gx~e,e0 ,t !.

~A5!

In obtaining Eq.~A5! use has been made of the fact that

E de Ġx~e,e0 ,t !52@12c~x!#E de G~e!Gx~e,e0 ,t !

as can be shown using Eqs.~A1! and~A2!. We point out that
the first term stems from the diagonal part ofPx(e,e8) and
the term}c(x) from the off-diagonal part. The initial deca
rate (tx

in)215@tx(t50)#21 then reads, usingGx(e,e0 ,t
50)5d(e2e0),

~tx
in!215@12c~x!#E de peq~e!G~e!. ~A6!

This expression is the one given as Eqs.~19! and~21! in the
text. It is obvious from this derivation that in the case
single exponentially decaying correlation functions the
stantaneous decay rates are time independent and are
by Eq. ~A6!.
y

f
-
ven

APPENDIX B: THE LONG TIME LIMIT OF S„Q,t…
FOR Q˜0

We will derive the asymptotic long time behavior of th
intermediate scattering functionS(Q,t), where Q denotes
the reduced scattering vector, defined in Eq.~15!, in the limit
of small Q values,Q!1. For simplicity, we use a discret
notation, in which, e.g., Eq.~16! reads

S~Q,t !5 (
i , j 51

N

peq~e i !GQ~e i ,e j ,t !. ~B1!

Normalization is such that( i p
eq(e i)51. All results are of

course independent of this discretization. In the continu
case all sums occurring in the following are simply to
replaced by the corresponding integrals. We proceed in
following way: We have to solve the master equation, E
~13!, which reads

ĠQ~e i ,e j ,t !5 (
k51

N

PQ~e i ,ek!GQ~ek ,e j ,t ! ~B2!

with

PQ~e i ,ek!52G~e i !d i ,k1 j 0~Q!k~e i ,ek!@12d i ,k#
~B3!

@cf. Eq. ~14!# where we have used the definition~20! for the
effective decay rate. We now utilize the smallQ limit of the
Bessel function,j 0(Q).12 1

6 Q2 in order to define a prob-
lem that we can treat in perturbation theory.~Note that in
three dimensions every well defined model for diffusion h
to show the same limiting behavior as the Bessel functio!
We now split the matrixPQ(e i ,ek) in an obvious way:

PQ~e i ,ek!5P~0!~e i ,ek!1PQ
~1!~e i ,ek!. ~B4!

Here the ‘‘unperturbed’’ problem is defined by

P~0!~e i ,ek!52G~e i !d i ,k1k~e i ,ek!@12d i ,k# ~B5!

and is independent ofQ. The ‘‘perturbation’’ is given by

PQ
~1!~e i ,ek!52 1

6 Q2k~e i ,ek!@12d i ,k#. ~B6!

The matrixPQ(e i ,ek) has the same eigenvalues as the sy
metric matrix

P̃Q~e i ,ek!5@peq~e i !#
21/2PQ~e i ,ek!@peq~ek!#

1/2

~Ref. @2#!. In the limit Q→0 Eq. ~1! is recovered from Eq.
~B2!. This particularly means that there is one eigenvec
~the largest one!, which is zero,l050. The corresponding
eigenvector of the matrixP̃(0)(e i ,ek) is given by Sk,0

5Apeq(ek). In terms of the eigenvectors the solution of E
~1! after Laplace transformationf (s)5*dt e2stf (t) reads

G~e i ,e j ,s!5Apeq~e i !/p
eq~e j !(

m
Si ,mSj ,m@s2lm#21.

~B7!

This solution allows us to write down the perturbation ser
with respect toPQ

(1)(e i ,ek):
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GQ~e i ,e j ,s!5G~e i ,e j ,s!

2
1

6
Q2(

k,l
G~e i ,ek ,s!k~ek ,e l !G~e l ,e j ,s!

1O~Q4!. ~B8!

Insertion of Eq.~B7! yields

GQ~e i ,e j ,s!

5Apeq~e i !/peq~e j !H(
m

Si ,mSj ,m@s2lm#21

2
1

6
Q2(

k,l
(
m,n

Si ,mSk,mSl ,nSj ,nApeq~e l !/p
eq~ek!

3k~ek ,e l !@s2lm#21@s2ln#21J . ~B9!

The most important terms in this expression are those w
n5m. We now neglect the other terms and treat then5m
terms of Eq.~B9! as the first terms of a geometrical serie
which we sum. This way we obtain

GQ~e i ,e j ,s!.Apeq~e i !/p
eq~e j !

3(
m

Si ,mSj ,m@s2lm2Xm#21, ~B10!

where we have defined the correction terms:
nd

s,

u

m

iq
,

-
.

th

,

Xm ª2
1

6
Q2(

k,l
Sk,mSl ,mApeq~e l !/p

eq~ek!k~ek ,e l !.

~B11!

Thus, our approximate expression for the intermedi
scattering function is

S~Q,t !.(
i , j

Apeq~e i !p
eq~e j !(

m
Si ,mSj ,me~lm1Xm!t.

~B12!

From this expression it is seen that in the long time lim
only the term withm50 contributes, since all others deca
faster due to the negative values oflm , mÞ0. ~Note that the
Xm are negative definite.! Remembering that Sk,0
5Apeq(ek) and the normalization of the equilibrium popula
tions we find

S~Q,t !;eX0t for t→`. ~B13!

Here,X0 is given by

X052
1

6
Q2(

l
peq~e l !(

k
k~ek ,e l !

52
1

6
Q2(

l
peq~e l !G~e l ![2

1

6
Q2^G&, ~B14!

cf. Eq. ~22!.
Comparison of Eq. ~B13! with S(Q,t)5exp@2(Q/

dR)2DTt# shows that the long time diffusion coefficient in th
limit of small Q is given by Eq.~23!.
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@17# R. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J
Chem. Phys.99, 4201~1993!.

@18# M. S. Beevers, J. Crossley, D. C. Garrington, and G. William
J. Chem. Soc., Faraday Trans.73, 458 ~1977!.

@19# D. Kivelson and D. Miles, J. Chem. Phys.88, 1925~1988!.
@20# D. Kivelson and S. A. Kivelson, J. Chem. Phys.90, 4464

~1989!.
@21# Proceedings of the International Discussion Meeting on Re

ation in Complex Systems, Heraklion, Crete, 1990@J. Non-
Cryst. Solids131-133~1991!#.

@22# H. W. Spiess, in Proceedings of the International Discuss
Meeting on Relaxation in Complex Systems~Ref. @21#!, p.
378.

@23# G. Williams, in Proceedings of the International Discussi
Meeting on Relaxation in Complex Systems~Ref. @21#!, p.
379.

@24# G. Williams, J. Non-Cryst. Solids131-133, 1 ~1991!.
@25# The question of the angular jump size~of paramagnetic probe

molecules! in o-TP was also addressed by an electronic s
resonance study. L. Andreozzi, F. Cianflone, C. Donati and



m
.

pl.

H.

ticle
le

.

ry,

4410 57DIEZEMANN, SILLESCU, HINZE, AND BÖHMER
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